WEIGHT MODULES OVER INFINITE DIMENSIONAL WEYL ALGEBRAS

被引:19
作者
Futorny, Vyacheslav [1 ]
Grantcharov, Dimitar [2 ]
Mazorchuk, Volodymyr [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[3] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
REPRESENTATIONS;
D O I
10.1090/S0002-9939-2014-12071-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify simple weight modules over infinite dimensional Weyl algebras and realize them using the action on certain localizations of the polynomial ring. We describe indecomposable projective and injective weight modules and deduce from this a description of blocks of the category of weight modules by quivers and relations. As a corollary we establish Koszulity for all blocks.
引用
收藏
页码:3049 / 3057
页数:9
相关论文
共 18 条
[1]   MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS [J].
ABRAMS, GD .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) :801-837
[2]  
Backelin J., 1985, REV ROUMAINE MATH PU, V30, P85
[3]   Indecomposable representations of generalized Weyl algebras [J].
Bavula, V ;
Bekkert, V .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) :5067-5100
[4]  
Bavula V.V., 1992, Algebra Anal., V4, P75
[5]  
Bavula V.V., 1993, St. Petersburg Math. J., V4, P71
[6]  
Bekkert Viktor, 2004, KAC MOODY LIE ALGEBR, VRI, P17, DOI [10.1090/conm/343/06182, DOI 10.1090/C0NM/343/06182]
[7]  
Bekkert Viktor, 2004, CONT MATH, V343, P17
[8]   INFINITE TENSOR PRODUCTS OF CSTAR-ALGEBRAS [J].
BLACKADAR, BE .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 72 (02) :313-334
[9]   Fock space realizations of imaginary Verma modules [J].
Cox, BL .
ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (02) :173-206
[10]   Intermediate Wakimoto modules for affine [J].
Cox, BL ;
Futorny, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (21) :5589-5603