Sum of squares of derivable functions

被引:11
作者
Bony, Jean-Michel [1 ]
机构
[1] Ecole Polytech, Ctr Math, F-91128 Palaiseau, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2005年 / 133卷 / 04期
关键词
D O I
10.24033/bsmf.2499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any nonnegative function of class C-2m defined in an interval is the sum of two squares of functions of class C-m. In dimension 2, any nonnegative function f of class C-4 is a finite sum of squares of functions of class C-2, provided that del(4)f vanishes at points x satisfying f(x) = del(2)f(x) = 0.
引用
收藏
页码:619 / 639
页数:21
相关论文
共 5 条
[1]   POSITIVITY OF PSEUDODIFFERENTIAL OPERATORS [J].
FEFFERMAN, C ;
PHONG, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (10) :4673-4674
[2]  
Glaeser G., 1963, ANN I FOURIER, V13, P203
[3]   C-2 a priori estimates for degenerate Monge-Ampere equations [J].
Guan, PF .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (02) :323-346
[4]   LOWER BOUNDS FOR PSEUDODIFFERENTIAL-OPERATORS [J].
LERNER, N ;
NOURRIGAT, J .
ANNALES DE L INSTITUT FOURIER, 1990, 40 (03) :657-682
[5]   On the Fefferman-Phong inequality and related problems [J].
Tataru, D .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (11-12) :2101-2138