Quantum-classical correspondence on compact phase space

被引:3
作者
Horvat, Martin [1 ]
Prosen, Tomaz
Esposti, Mirko Degli
机构
[1] Univ Ljubljana, Dept Phys, Fac Math & Phys, Ljubljana 61000, Slovenia
[2] Univ Bologna, Dept Math, Bologna, Italy
关键词
D O I
10.1088/0951-7715/19/6/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose to study the L-2-norm distance between classical and quantum phase space distributions, where for the latter we choose the Wigner function, as a global phase space indicator of quantum-classical correspondence. For example, this quantity should be the key to understanding the correspondence between quantum and classical Loschmidt echoes. We concentrate on fully chaotic systems with compact (finite) classical phase space. By means of numerical simulations and heuristic arguments we find that the quantum classical fidelity stays at one up to the Ehrenfest-type time scale, which is proportional to the logarithm of effective Planck constant, and decays exponentially with a maximal classical Lyapunov exponent, after that time.
引用
收藏
页码:1471 / 1493
页数:23
相关论文
共 42 条
[11]   QUANTIZATION OF ANOSOV MAPS [J].
DEMATOS, MB ;
DEALMEIDA, AMO .
ANNALS OF PHYSICS, 1995, 237 (01) :46-65
[12]   OSCILLATORY INTEGRALS, LAGRANGE IMMERSIONS AND UNFOLDING OF SINGULARITIES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (02) :207-281
[13]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[14]  
Esposti M. Degli, 2006, UNPUB
[15]   Quantum variance and ergodicity for the baker's map [J].
Esposti, MD ;
Nonnenmacher, S ;
Winn, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (02) :325-352
[16]   CLASSICAL LIMIT OF THE QUANTIZED HYPERBOLIC TORAL AUTOMORPHISMS [J].
ESPOSTI, MD ;
GRAFFI, S ;
ISOLA, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) :471-507
[17]  
ESPOSTI MD, 2003, LECT NOTES PHYS, V618
[18]  
ESPOSTI MD, 2005, J PHYS A, V38, P1
[19]  
Folland G B, 1989, HARMONIC ANAL PHASE, V122
[20]   Semiclassical dynamics with exponentially small error estimates [J].
Hagedorn, GA ;
Joye, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (02) :439-465