Quantum-classical correspondence on compact phase space

被引:3
作者
Horvat, Martin [1 ]
Prosen, Tomaz
Esposti, Mirko Degli
机构
[1] Univ Ljubljana, Dept Phys, Fac Math & Phys, Ljubljana 61000, Slovenia
[2] Univ Bologna, Dept Math, Bologna, Italy
关键词
D O I
10.1088/0951-7715/19/6/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose to study the L-2-norm distance between classical and quantum phase space distributions, where for the latter we choose the Wigner function, as a global phase space indicator of quantum-classical correspondence. For example, this quantity should be the key to understanding the correspondence between quantum and classical Loschmidt echoes. We concentrate on fully chaotic systems with compact (finite) classical phase space. By means of numerical simulations and heuristic arguments we find that the quantum classical fidelity stays at one up to the Ehrenfest-type time scale, which is proportional to the logarithm of effective Planck constant, and decays exponentially with a maximal classical Lyapunov exponent, after that time.
引用
收藏
页码:1471 / 1493
页数:23
相关论文
共 42 条
[1]   SEMICLASSICAL WIGNER FUNCTIONS FOR QUANTUM MAPS ON A TORUS [J].
AGAM, O ;
BRENNER, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05) :1345-1360
[2]  
ANOSOV DV, 1962, DOKL AKAD NAUK SSSR+, V145, P707
[3]  
Arnold V., 1989, ERGODIC PROBLEMS CLA, Vsecond
[4]  
ARNOLD VI, 1967, PROBLEMES MECANIQUE
[5]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[6]   Long time propagation and control on scarring for perturbed quantized hyperbolic toral automorphisms [J].
Bouclet, JM ;
De Bièvre, S .
ANNALES HENRI POINCARE, 2005, 6 (05) :885-913
[7]   Equipartition of the eigenfunctions of quantized ergodic maps on the torus [J].
Bouzouina, A ;
DeBievre, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (01) :83-105
[8]   ERGODIC AND STATISTICAL PROPERTIES OF PIECEWISE LINEAR HYPERBOLIC AUTOMORPHISMS OF THE 2-TORUS [J].
CHERNOV, NI .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (1-2) :111-134
[9]  
Combescure M, 1997, ASYMPTOTIC ANAL, V14, P377
[10]  
De Bievre S, 1998, ANN I H POINCARE-PHY, V69, P1