A novel approach to construct numerical methods for stochastic differential equations

被引:15
作者
Halidias, Nikolaos [1 ]
机构
[1] Univ Aegean, Dept Stat & Actuarial Financial Math, Karlovassi 83200, Samos, Greece
关键词
Explicit numerical scheme; Super linear stochastic differential equations; LIPSCHITZ CONTINUOUS COEFFICIENTS; STRONG-CONVERGENCE;
D O I
10.1007/s11075-013-9724-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new numerical method for solving stochastic differential equations (SDEs). As an application of this method we propose an explicit numerical scheme for a super linear SDE for which the usual Euler scheme diverges.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 9 条
[1]   Semi-discrete approximations for stochastic differential equations and applications [J].
Halidias, Nikolaos .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (06) :780-794
[2]   Strong convergence of Euler-type methods for nonlinear stochastic differential equations [J].
Higham, DJ ;
Mao, XR ;
Stuart, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) :1041-1063
[3]   STRONG CONVERGENCE OF AN EXPLICIT NUMERICAL METHOD FOR SDES WITH NONGLOBALLY LIPSCHITZ CONTINUOUS COEFFICIENTS [J].
Hutzenthaler, Martin ;
Jentzen, Arnulf ;
Kloeden, Peter E. .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (04) :1611-1641
[4]   Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients [J].
Hutzenthaler, Martin ;
Jentzen, Arnulf ;
Kloeden, Peter E. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2130) :1563-1576
[5]  
Kloeden P. E., 1999, NUMERICAL SOLUION ST, DOI DOI 10.1007/978-3-662-12616-5
[6]  
Kloeden P, 2013, INTERD MATH SCI, V14, P49
[7]  
Mao X., 2007, Stochastic Differential Equations and Applications, V2nd, DOI DOI 10.1533/9780857099402
[8]   Strong convergence rates for backward Euler-Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients [J].
Mao, Xuerong ;
Szpruch, Lukasz .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (01) :144-171
[9]   Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients [J].
Mao, Xuerong ;
Szpruch, Lukasz .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 238 :14-28