ON COOPERATIVE PARABOLIC SYSTEMS: HARNACK INEQUALITIES AND ASYMPTOTIC SYMMETRY

被引:44
作者
Foeldes, J. [1 ]
Polacik, P. [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Parabolic cooperative systems; positive solutions; asymptotic symmetry; Harnack inequality; SEMILINEAR ELLIPTIC-SYSTEMS; POSITIVE SOLUTIONS; MAXIMUM PRINCIPLE; BOUNDED DOMAINS; EQUATIONS; SPACE; IRN;
D O I
10.3934/dcds.2009.25.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider fully nonlinear weakly coupled systems of parabolic equations on a bounded reflectionally symmetric domain. Assuming the system is cooperative we prove the asymptotic symmetry of positive bounded solutions. To facilitate an application of the method of moving hyperplanes, we derive Harnack type estimates for linear cooperative parabolic systems.
引用
收藏
页码:133 / 157
页数:25
相关论文
共 42 条
[1]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[2]  
Amann H, 2005, TEN MATHEMATICAL ESSAYS ON APPROXIMATION IN ANALYSIS AND TOPOLOGY, P1, DOI 10.1016/B978-044451861-3/50001-X
[3]  
[Anonymous], 2004, Handbook of Differential Equations: Stationary Partial Differential Equations, DOI DOI 10.1016/S1874-5733(04)80005-6
[4]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[5]  
[Anonymous], 1981, ADV MATH SUPPL STUD
[6]   Harnack's inequality for cooperative weakly coupled elliptic systems [J].
Arapostathis, A ;
Ghosh, MK ;
Marcus, SI .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (9-10) :1555-1571
[7]  
Babin A.V., 1994, J. Dynam. Differential Equations, V6, P639, DOI DOI 10.1007/BF02218852
[8]   SYMMETRY OF INSTABILITIES FOR SCALAR EQUATIONS IN SYMMETRICAL DOMAINS [J].
BABIN, AV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (01) :122-152
[9]   Attractors of non-autonomous parabolic equations and their symmetry properties [J].
Babin, AV ;
Sell, GR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (01) :1-50
[10]  
Berestycki H, 2000, CH CRC RES NOTES, V406, P34