Systems of inequalities and numerical semigroups

被引:35
作者
Rosales, JC [1 ]
García-Sánchez, PA
García-García, JI
Branco, MB
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
[2] Univ Evora, Dept Matemat, P-7000 Evora, Portugal
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2002年 / 65卷
关键词
D O I
10.1112/S0024610701003052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A one-to-one correspondence is described between the set Y(m) of numerical semigroups with multiplicity m and the set of non-negative integer solutions of a system of linear Diophantine inequalities. This correspondence infers in Y(m) a semigroup structure and the resulting semigroup is isomorphic to a subsemigroup of Nm-1. Finally, this result is particularized to the symmetric case.
引用
收藏
页码:611 / 623
页数:13
相关论文
共 17 条
[1]   Avoiding slack variables in the solving of linear diophantine equations and inequations [J].
Ajili, F ;
Contejean, E .
THEORETICAL COMPUTER SCIENCE, 1997, 173 (01) :183-208
[2]  
APERY R, 1946, C R ACAD SCI PARIS, V222
[3]  
Barucci V., 1997, MEM AM MATH SOC, V598
[4]   SEMIGROUPS OF INTEGERS AND APPLICATION TO BRANCHES [J].
BERTIN, J ;
CARBONNE, P .
JOURNAL OF ALGEBRA, 1977, 49 (01) :81-95
[5]   PRIME IDEALS WITH GENERIC ZERO XI=TNI [J].
BRESINSKY, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) :329-332
[6]   AN EFFICIENT INCREMENTAL ALGORITHM FOR SOLVING SYSTEMS OF LINEAR DIOPHANTINE EQUATIONS [J].
CONTEJEAN, E ;
DEVIE, H .
INFORMATION AND COMPUTATION, 1994, 113 (01) :143-172
[7]  
DELORME C, 1976, ANN SCI ECOLE NORM S, V9, P145
[8]  
GILMER R, 1984, COMMUTATIVE SEMIGROU
[9]   GENERATORS AND RELATIONS OF ABELIAN SEMIGROUPS AND SEMIGROUP RINGS [J].
HERZOG, J .
MANUSCRIPTA MATHEMATICA, 1970, 3 (02) :175-&