SARS-CoV-2, Early Entry Events

被引:25
作者
Chambers, James P. [1 ]
Yu, Jieh [1 ]
Valdes, James J. [1 ,2 ]
Arulanandam, Bernard P. [1 ]
机构
[1] Univ Texas San Antonio, South Texas Ctr Emerging Infect Dis, San Antonio, TX 78249 USA
[2] MSI STEM Res & Dev Consortium, Washington, DC USA
基金
美国国家卫生研究院;
关键词
CORONAVIRUS SPIKE PROTEIN; RECEPTOR; GLYCOPROTEIN;
D O I
10.1155/2020/9238696
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Viruses are obligate intracellular parasites, and host cell entry is the first step in the viral life cycle. The SARS-CoV-2 (COVID-19) entry process into susceptible host tissue cells is complex requiring (1) attachment of the virus via the conserved spike (S) protein receptor-binding motif (RBM) to the host cell angiotensin-converting-enzyme 2 (ACE2) receptor, (2) S protein proteolytic processing, and (3) membrane fusion. Spike protein processing occurs at two cleavage sites, i.e., S-1/S-2 and S2 '. Cleavage at the S-1/S-2 and S2 ' sites ultimately gives rise to generation of competent fusion elements important in the merging of the host cell and viral membranes. Following cleavage, shedding of the S-1 crown results in significant conformational changes and fusion peptide repositioning for target membrane insertion and fusion. Identification of specific protease involvement has been difficult due to the many cell types used and studied. However, it appears that S protein proteolytic cleavage is dependent on (1) furin and (2) serine protease transmembrane protease serine 2 proteases acting in tandem. Although at present not clear, increased SARS-CoV-2 S receptor-binding motif binding affinity and replication efficiency may in part account for observed differences in infectivity. Cleavage of the ACE2 receptor appears to be yet another layer of complexity in addition to forfeiture and/or alteration of ACE2 function which plays an important role in cardiovascular and immune function.
引用
收藏
页数:11
相关论文
共 108 条
[1]   Novel Inhibitors of Severe Acute Respiratory Syndrome Coronavirus Entry That Act by Three Distinct Mechanisms [J].
Adedeji, Adeyemi O. ;
Severson, William ;
Jonsson, Colleen ;
Singh, Kamalendra ;
Weiss, Susan R. ;
Sarafianos, Stefan G. .
JOURNAL OF VIROLOGY, 2013, 87 (14) :8017-8028
[2]   The proximal origin of SARS-CoV-2 [J].
Andersen, Kristian G. ;
Rambaut, Andrew ;
Lipkin, W. Ian ;
Holmes, Edward C. ;
Garry, Robert F. .
NATURE MEDICINE, 2020, 26 (04) :450-452
[3]   Mining a Cathepsin Inhibitor Library for New Antiparasitic Drug Leads [J].
Ang, Kenny K. H. ;
Ratnam, Joseline ;
Gut, Jiri ;
Legac, Jennifer ;
Hansell, Elizabeth ;
Mackey, Zachary B. ;
Skrzypczynska, Katarzyna M. ;
Debnath, Anjan ;
Engel, Juan C. ;
Rosenthal, Philip J. ;
McKerrow, James H. ;
Arkin, Michelle R. ;
Renslo, Adam R. .
PLOS NEGLECTED TROPICAL DISEASES, 2011, 5 (05)
[4]   Human Betacoronavirus 2c EMC/2012-related Viruses in Bats, Ghana and Europe [J].
Annan, Augustina ;
Baldwin, Heather J. ;
Corman, Victor Max ;
Klose, Stefan M. ;
Owusu, Michael ;
Nkrumah, Evans Ewald ;
Badu, Ebenezer Kofi ;
Anti, Priscilla ;
Agbenyega, Olivia ;
Meyer, Benjamin ;
Oppong, Samuel ;
Sarkodie, Yaw Adu ;
Kalko, Elisabeth K. V. ;
Lina, Peter H. C. ;
Godlevska, Elena V. ;
Reusken, Chantal ;
Seebens, Antje ;
Gloza-Rausch, Florian ;
Vallo, Peter ;
Tschapka, Marco ;
Drosten, Christian ;
Drexler, Jan Felix .
EMERGING INFECTIOUS DISEASES, 2013, 19 (03) :456-459
[5]   Global aspects of viral glycosylation [J].
Bagdonaite, Ieva ;
Wandall, Hans H. .
GLYCOBIOLOGY, 2018, 28 (07) :443-467
[6]   Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites [J].
Belouzard, Sandrine ;
Chu, Victor C. ;
Whittaker, Gary R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (14) :5871-5876
[7]   TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium [J].
Bertram, Stephanie ;
Dijkman, Ronald ;
Habjan, Matthias ;
Heurich, Adeline ;
Gierer, Stefanie ;
Glowacka, Ilona ;
Welsch, Kathrin ;
Winkler, Michael ;
Schneider, Heike ;
Hofmann-Winkler, Heike ;
Thiel, Volker ;
Poehlmann, Stefan .
JOURNAL OF VIROLOGY, 2013, 87 (11) :6150-6160
[8]   Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease [J].
Bertram, Stephanie ;
Glowacka, Ilona ;
Mueller, Marcel A. ;
Lavender, Hayley ;
Gnirss, Kerstin ;
Nehlmeier, Inga ;
Niemeyer, Daniela ;
He, Yuxian ;
Simmons, Graham ;
Drosten, Christian ;
Soilleux, Elizabeth J. ;
Jahn, Olaf ;
Steffen, Imke ;
Poehlmann, Stefan .
JOURNAL OF VIROLOGY, 2011, 85 (24) :13363-13372
[9]   TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells [J].
Bestle, Dorothea ;
Heindl, Miriam Ruth ;
Limburg, Hannah ;
Thuy Van Lam Van ;
Pilgram, Oliver ;
Moulton, Hong ;
Stein, David A. ;
Hardes, Kornelia ;
Eickmann, Markus ;
Dolnik, Olga ;
Rohde, Cornelius ;
Klenk, Hans-Dieter ;
Garten, Wolfgang ;
Steinmetzer, Torsten ;
Boettcher-Friebertshaeuser, Eva .
LIFE SCIENCE ALLIANCE, 2020, 3 (09)
[10]   Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide [J].
Bosch, Berend Jan ;
Bartelink, Willem ;
Rottier, Peter J. M. .
JOURNAL OF VIROLOGY, 2008, 82 (17) :8887-8890