Scalable ion-photon quantum interface based on integrated diffractive mirrors

被引:30
作者
Ghadimi, Moji [1 ]
Blums, Valdis [1 ]
Norton, Benjamin G. [1 ]
Fisher, Paul M. [1 ]
Connell, Steven C. [1 ]
Amini, Jason M. [2 ]
Volin, Curtis [2 ]
Hayden, Harley [2 ]
Pai, Chien-Shing [2 ]
Kielpinski, David [1 ]
Lobino, Mirko [1 ,3 ]
Streed, Erik W. [1 ,4 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[2] Georgia Tech Res Inst, Atlanta, GA 30318 USA
[3] Griffith Univ, Queensland Micro & Nanotechnol Ctr, Brisbane, Qld 4111, Australia
[4] Griffith Univ, Inst Glyc, Gold Coast, Qld 4222, Australia
基金
澳大利亚研究理事会;
关键词
TRAPPED IONS; ATOM; ENTANGLEMENT; COMPUTER; QUBITS;
D O I
10.1038/s41534-017-0006-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum networking links quantum processors through remote entanglement for distributed quantum information processing and secure long-range communication. Trapped ions are a leading quantum information processing platform, having demonstrated universal small-scale processors and roadmaps for large-scale implementation. Overall rates of ion-photon entanglement generation, essential for remote trapped ion entanglement, are limited by coupling efficiency into single mode fibers and scaling to many ions. Here, we show a microfabricated trap with integrated diffractive mirrors that couples 4.1(6)% of the fluorescence from a Yb-174(+) ion into a single mode fiber, nearly triple the demonstrated bulk optics efficiency. The integrated optic collects 5.8(8)% of the p transition fluorescence, images the ion with sub-wavelength resolution, and couples 71(5)% of the collected light into the fiber. Our technology is suitable for entangling multiple ions in parallel and overcomes mode quality limitations of existing integrated optical interconnects.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Observation of entanglement between a single trapped atom and a single photon [J].
Blinov, BB ;
Moehring, DL ;
Duan, LM ;
Monroe, C .
NATURE, 2004, 428 (6979) :153-157
[2]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[3]   Single-qubit-gate error below 10-4 in a trapped ion [J].
Brown, K. R. ;
Wilson, A. C. ;
Colombe, Y. ;
Ospelkaus, C. ;
Meier, A. M. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2011, 84 (03)
[4]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[5]   Characterization of Fluorescence Collection Optics Integrated with a Microfabricated Surface Electrode Ion Trap [J].
Clark, Craig R. ;
Chou, Chin-wen ;
Ellis, A. R. ;
Hunker, Jeff ;
Kemme, Shanalyn A. ;
Maunz, Peter ;
Tabakov, Boyan ;
Tigges, Chris ;
Stick, Daniel L. .
PHYSICAL REVIEW APPLIED, 2014, 1 (02)
[6]   Demonstration of a small programmable quantum computer with atomic qubits [J].
Debnath, S. ;
Linke, N. M. ;
Figgatt, C. ;
Landsman, K. A. ;
Wright, K. ;
Monroe, C. .
NATURE, 2016, 536 (7614) :63-+
[7]   99% efficiency measured in the-1st order of a resonant grating [J].
Destouches, N ;
Tishchenko, AV ;
Pommier, JC ;
Reynaud, S ;
Parriaux, O ;
Tonchev, S ;
Ahmed, MA .
OPTICS EXPRESS, 2005, 13 (09) :3230-3235
[8]   Controlling cold atoms using nanofabricated surfaces:: Atom chips [J].
Folman, R ;
Krüger, P ;
Cassettari, D ;
Hessmo, B ;
Maier, T ;
Schmiedmayer, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4749-4752
[9]   High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit [J].
Harty, T. P. ;
Allcock, D. T. C. ;
Ballance, C. J. ;
Guidoni, L. ;
Janacek, H. A. ;
Linke, N. M. ;
Stacey, D. N. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (22)
[10]  
Hucul D, 2015, NAT PHYS, V11, P37, DOI [10.1038/nphys3150, 10.1038/NPHYS3150]