Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials

被引:60
作者
Ren, Ke [1 ,2 ]
Wang, Qiankun [2 ]
Cao, Yejie [2 ]
Shao, Gang [3 ]
Wang, Yiguang [1 ]
机构
[1] Beijing Inst Technol, Inst Adv Struct Technol, Haidian Dist Beijing 100081, Peoples R China
[2] Northwestern Polytech Univ, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Shaanxi, Peoples R China
[3] Zhengzhou Univ, Henan Prov Ind Technol Res Inst Resources & Mat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings; Fluorite structure; Multicomponent ceramics; Phase stability; Thermophysical properties; LANTHANUM-CERIUM OXIDE; THERMOPHYSICAL PROPERTIES; CONDUCTIVITY;
D O I
10.1016/j.jeurceramsoc.2020.10.005
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal barrier coatings can improve the energy efficiency of industrial or aircraft gas turbines by increasing the operation temperature. In this study, new TBC materials, namely multicomponent rare-earth cerate (Sm0.2Eu0.2Tb0.2Dy0.2 Lu-0.2)(2)Ce2O7 (5RC) and zirconocerate (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)(2)ZrCeO7 (5RZC) ceramics were synthesized by solid-state reaction sintering. 5RC and 5RZC had a homogeneous rare-earth element distribution and a pure fluorite structure up to at least 1400 degrees C, hence, showing good phase stability. The coefficient of thermal expansion of 5RC appeared to have a linear increase, reaching 12.60 x 10(-6) K-1 at 1200 degrees C without a sharp increase at low temperatures, as observed for several single-component rare earth cerates. The thermal conductivity was also reduced in multicomponent 5RC and 5RZC. Moreover, 5RZC exhibited a better sintering resistance than 5RC. The doped Zr reduces the volatilization of ceria and enhances the stability of 5RC. As conclusion, the multicomponent rare-earth cerates 5RC and 5RZC are potential thermal barrier coating materials.
引用
收藏
页码:1720 / 1725
页数:6
相关论文
共 35 条
[1]   The evolution of thermal barrier coatings - status and upcoming solutions for today's key issues [J].
Beele, W ;
Marijnissen, G ;
van Lieshout, A .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :61-67
[2]  
Belmonte M, 2010, ADV ENG MATER, V8, P693
[3]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[4]   Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides [J].
Braun, Jeffrey L. ;
Rost, Christina M. ;
Lim, Mina ;
Giri, Ashutosh ;
Olson, David H. ;
Kotsonis, George N. ;
Stan, Gheorghe ;
Brenner, Donald W. ;
Maria, Jon-Paul ;
Hopkins, Patrick E. .
ADVANCED MATERIALS, 2018, 30 (51)
[5]   New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides [J].
Cao, XQ ;
Vassen, R ;
Tietz, F ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (03) :247-251
[6]   Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications [J].
Cao, XQ ;
Vassen, R ;
Fischer, W ;
Tietz, F ;
Jungen, W ;
Stöver, D .
ADVANCED MATERIALS, 2003, 15 (17) :1438-1442
[7]   Preparation and thermophysical properties of (Sm1-xErx)2Ce2O7 oxides for thermal barrier coatings [J].
Chen Xiaoge ;
Yang Shusen ;
Zhang Hongsong ;
Li Gang ;
Li Zhenjun ;
Ren Bo ;
Dang Xudan ;
Zhang Haoming ;
Tang An .
MATERIALS RESEARCH BULLETIN, 2014, 51 :171-175
[8]   Thermal-barrier coatings for more efficient gas-turbine engines [J].
Clarke, David R. ;
Oechsner, Matthias ;
Padture, Nitin P. .
MRS BULLETIN, 2012, 37 (10) :891-902
[9]   Materials selection guidelines for low thermal conductivity thermal barrier coatings [J].
Clarke, DR .
SURFACE & COATINGS TECHNOLOGY, 2003, 163 :67-74
[10]   Materials design for the next generation thermal barrier coatings [J].
Clarke, DR ;
Levi, CG .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :383-417