Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach

被引:23
作者
Collier, Quinten [1 ]
Veraart, Jelle [1 ,2 ]
Jeurissen, Ben [1 ]
Vanhevel, Floris [3 ]
Pullens, Pim [3 ]
Parizel, Paul M. [3 ]
den Dekker, Arnold J. [1 ,4 ]
Sijbers, Jan [1 ]
机构
[1] Univ Antwerp, Dept Phys, IMEC, Vis Lab, Univ Pl 1,N 1-16, B-2610 Antwerp, Belgium
[2] NYU, Dept Radiol, Sch Med, Ctr Biomed Imaging, 560 1St Ave, New York, NY 10016 USA
[3] Univ Antwerp, Univ Antwerp Hosp, Dept Radiol, Edegem, Belgium
[4] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
关键词
diffusion kurtosis imaging; free water elimination; Bayesian estimation; shrinkage prior; partial volume effects; HUMAN BRAIN; MICROSTRUCTURAL ALTERATIONS; EXPERIMENTAL STROKE; RICIAN DISTRIBUTION; MAXIMUM-LIKELIHOOD; CSF SUPPRESSION; T-2; RELAXATION; MRI; IMAGES; OPTIMIZATION;
D O I
10.1002/mrm.27075
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeDiffusion kurtosis imaging (DKI) is an advanced magnetic resonance imaging modality that is known to be sensitive to changes in the underlying microstructure of the brain. Image voxels in diffusion weighted images, however, are typically relatively large making them susceptible to partial volume effects, especially when part of the voxel contains cerebrospinal fluid. In this work, we introduce the Diffusion Kurtosis Imaging with Free Water Elimination (DKI-FWE) model that separates the signal contributions of free water and tissue, where the latter is modeled using DKI. Theory and MethodsA theoretical study of the DKI-FWE model, including an optimal experiment design and an evaluation of the relative goodness of fit, is carried out. To stabilize the ill-conditioned estimation process, a Bayesian approach with a shrinkage prior (BSP) is proposed. In subsequent steps, the DKI-FWE model and the BSP estimation approach are evaluated in terms of estimation error, both in simulation and real data experiments. ResultsAlthough it is shown that the DKI-FWE model parameter estimation problem is ill-conditioned, DKI-FWE was found to describe the data significantly better compared to the standard DKI model for a large range of free water fractions. The acquisition protocol was optimized in terms of the maximally attainable precision of the DKI-FWE model parameters. The BSP estimator is shown to provide reliable DKI-FWE model parameter estimates. ConclusionThe combination of the DKI-FWE model with BSP is shown to be a feasible approach to estimate DKI parameters, while simultaneously eliminating free water partial volume effects. Magn Reson Med 80:802-813, 2018. (c) 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
引用
收藏
页码:802 / 813
页数:12
相关论文
共 82 条
[1]   An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging [J].
Andersson, Jesper L. R. ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2016, 125 :1063-1078
[2]   How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging [J].
Andersson, JLR ;
Skare, S ;
Ashburner, J .
NEUROIMAGE, 2003, 20 (02) :870-888
[3]   Combined diffusion weighting and CSF suppression in functional MRI [J].
Andersson, L ;
Bolling, M ;
Wirestam, R ;
Holtås, S ;
Ståhlberg, F .
NMR IN BIOMEDICINE, 2002, 15 (03) :235-240
[4]  
[Anonymous], P 24 ANN M ISMRM SIN
[5]  
[Anonymous], P 23 ANN M ISMRM TOR, DOI DOI 10.1016/j.neuroimage.2011.07.050
[6]  
[Anonymous], 1997, NUMERICAL LINEAR ALG
[7]  
[Anonymous], PARAMETER ESTIMATION
[8]  
[Anonymous], 2017, P 25 ANN M ISMRM
[9]  
[Anonymous], P 23 ANN M ISMRM TOR, DOI DOI 10.1016/j.mri.2008.02.001
[10]  
[Anonymous], 2015, MATLAB