Robust sparse regression and tuning parameter selection via the efficient bootstrap information criteria

被引:10
作者
Park, Heewon [1 ]
Sakaori, Fumitake [1 ]
Konishi, Sadanori [1 ]
机构
[1] Chuo Univ, Fac Sci & Engn, Dept Math, Bunkyo Ku, Tokyo 1128551, Japan
关键词
62F35; 62J07; 62F40; lasso-type regularization; elastic net; regression model; least-trimmed squares; efficient bootstrap information criteria; VARIABLE SELECTION; ORACLE PROPERTIES; CROSS-VALIDATION; LASSO; SHRINKAGE;
D O I
10.1080/00949655.2012.755532
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
There is currently much discussion about lasso-type regularized regression which is a useful tool for simultaneous estimation and variable selection. Although the lasso-type regularization has several advantages in regression modelling, owing to its sparsity, it suffers from outliers because of using penalized least-squares methods. To overcome this issue, we propose a robust lasso-type estimation procedure that uses the robust criteria as the loss function, imposing L-1-type penalty called the elastic net. We also introduce to use the efficient bootstrap information criteria for choosing optimal regularization parameters and a constant in outlier detection. Simulation studies and real data analysis are given to examine the efficiency of the proposed robust sparse regression modelling. We observe that our modelling strategy performs well in the presence of outliers.
引用
收藏
页码:1596 / 1607
页数:12
相关论文
共 17 条
[1]   High breakdown estimators for principal components: the projection-pursuit approach revisited [J].
Croux, C ;
Ruiz-Gazen, A .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (01) :206-226
[2]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[3]  
Kim Y, 2006, STAT SINICA, V16, P375
[4]  
Konishi S, 2008, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-71887-3
[5]   Generalised information criteria in model selection [J].
Konishi, S ;
Kitagawa, G .
BIOMETRIKA, 1996, 83 (04) :875-890
[6]  
Kozak A, 2003, CAN J FOREST RES, V33, P976, DOI [10.1139/x03-022, 10.1139/X03-022]
[7]   Robust regression through the Huber's criterion and adaptive lasso penalty [J].
Lambert-Lacroix, Sophie ;
Zwald, Laurent .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :1015-1053
[8]   Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context [J].
Martinez, Josue G. ;
Carroll, Raymond J. ;
Mueller, Samuel ;
Sampson, Joshua N. ;
Chatterjee, Nilanjan .
AMERICAN STATISTICIAN, 2011, 65 (04) :223-228
[9]   Robust Nonparametric Regression via Sparsity Control With Application to Load Curve Data Cleansing [J].
Mateos, Gonzalo ;
Giannakis, Georgios B. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (04) :1571-1584
[10]   Stability selection [J].
Meinshausen, Nicolai ;
Buehlmann, Peter .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :417-473