EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRODINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

被引:0
作者
Fang, Xiang-Dong [1 ]
Han, Zhi-Qing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Quasilinear Schrodinger equation; sign-changing potential; Cerami sequences; SOLITON-SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the quasilinear Schrodinger equation where the potential is sign-changing. We employ a mountain pass argument without compactness conditions to obtain the existence of a nontrivial solution.
引用
收藏
页数:8
相关论文
共 18 条
[11]   Soliton solutions for quasilinear Schrodinger equations, I [J].
Liu, JQ ;
Wang, ZQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :441-448
[12]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493
[13]   On the existence of soliton solutions to quasilinear Schrodinger equations [J].
Poppenberg, M ;
Schmitt, K ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (03) :329-344
[14]   Quasilinear asymptotically periodic Schrodinger equations with subcritical growth [J].
Silva, Elves A. B. ;
Vieira, Gilberto F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2935-2949
[15]  
Szulkin A, 1999, STUD MATH, V135, P191
[16]   Bound states to critical quasilinear Schrodinger equations [J].
Wang, Youjun ;
Zou, Wenming .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (01) :19-47
[17]  
Willem M., 1997, Minimax theorems
[18]   Homoclinic solutions for some second order non-autonomous Hamiltonian systems without the globally superquadratic condition [J].
Zhang, Ziheng ;
Yuan, Rong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1809-1819