EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRODINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

被引:0
作者
Fang, Xiang-Dong [1 ]
Han, Zhi-Qing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Quasilinear Schrodinger equation; sign-changing potential; Cerami sequences; SOLITON-SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the quasilinear Schrodinger equation where the potential is sign-changing. We employ a mountain pass argument without compactness conditions to obtain the existence of a nontrivial solution.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Non-autonomous perturbations for a class of quasilinear elliptic equations on R [J].
Alves, M. J. ;
Carriao, P. C. ;
Miyagaki, O. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :186-203
[2]  
[Anonymous], 2003, Adv. Differential Equations
[3]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[4]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[5]  
Deng YB, 2011, COMMUN MATH SCI, V9, P859
[6]   Bound states for semilinear Schrodinger equations with sign-changing potential [J].
Ding, Yanheng ;
Szulkin, Andrzej .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (03) :397-419
[7]   Solitary waves for a class of quasilinear Schrodinger equations in dimension two [J].
do O, Joao Marcos ;
Severo, Uberlandio .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :275-315
[8]   QUASILINEAR SCHRODINGER EQUATIONS INVOLVING CONCAVE AND CONVEX NONLINEARITIES [J].
do O, Joao Marcos ;
Severo, Uberlandio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) :621-644
[9]   Multiple solutions for a quasilinear Schrodinger equation [J].
Fang, Xiang-Dong ;
Szulkin, Andrzej .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :2015-2032
[10]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901