Phonons in twisted transition-metal dichalcogenide bilayers: Ultrasoft phasons and a transition from a superlubric to a pinned phase

被引:52
|
作者
Maity, Indrajit [1 ]
Naik, Mit H. [1 ]
Maiti, Prabal K. [1 ]
Krishnamurthy, H. R. [1 ]
Jain, Manish [1 ]
机构
[1] Indian Inst Sci, Ctr Condensed Matter Theory, Dept Phys, Bangalore 560012, Karnataka, India
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
关键词
MAGIC-ANGLE; MOIRE; BEHAVIOR; MODES; MOS2;
D O I
10.1103/PhysRevResearch.2.013335
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tunability of the interlayer coupling by twisting one layer with respect to another layer of two-dimensional materials provides a unique way to manipulate the phonons and related properties. We refer to this engineering of phononic properties as twistnonics. We study the effects of twisting on low-frequency shear modes (SMs) and layer breathing modes in a transition-metal dichalcogenide (TMD) bilayer using atomistic classical simulations. We show that these low-frequency modes are extremely sensitive to twisting and can be used to infer the twist angle. We find ultrasoft phason modes (frequency less than or similar to 1 cm(-1), comparable to acoustic modes) for any nonzero twist, corresponding to an effective translation of the moire lattice by relative displacement of the constituent layers in a nontrivial way. Unlike the acoustic modes, the velocity of the phason modes are quite sensitive to the twist angle. Also, high-frequency SMs appear for small twist angles, identical to those in stable bilayer TMD (theta = 0 degrees or 60 degrees), due to the overwhelming growth of stable stacking regions in relaxed twisted structures. Our study reveals the possibility of an intriguing theta-dependent superlubric to pinning behavior and of the existence of ultrasoft modes in all two-dimensional materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Magic in twisted transition metal dichalcogenide bilayers
    Devakul, Trithep
    Crepel, Valentin
    Zhang, Yang
    Fu, Liang
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Magic in twisted transition metal dichalcogenide bilayers
    Trithep Devakul
    Valentin Crépel
    Yang Zhang
    Liang Fu
    Nature Communications, 12
  • [3] Moire and beyond in transition metal dichalcogenide twisted bilayers
    Tran, Kha
    Choi, Junho
    Singh, Akshay
    2D MATERIALS, 2021, 8 (02)
  • [4] Slippery Paraelectric Transition-Metal Dichalcogenide Bilayers
    Marmolejo-Tejada, Juan M.
    Roll, Joseph E.
    Poudel, Shiva Prasad
    Barraza-Lopez, Salvador
    Mosquera, Martin A.
    NANO LETTERS, 2022, 22 (19) : 7984 - 7991
  • [5] Deep moiré potentials in twisted transition metal dichalcogenide bilayers
    Sara Shabani
    Dorri Halbertal
    Wenjing Wu
    Mingxing Chen
    Song Liu
    James Hone
    Wang Yao
    D. N. Basov
    Xiaoyang Zhu
    Abhay N. Pasupathy
    Nature Physics, 2021, 17 : 720 - 725
  • [6] Topological multiferroic order in twisted transition metal dichalcogenide bilayers
    Haavisto, Mikael
    Lado, Jose L.
    Fumega, Adolfo O.
    SCIPOST PHYSICS, 2022, 13 (03):
  • [7] Deep moire potentials in twisted transition metal dichalcogenide bilayers
    Shabani, Sara
    Halbertal, Dorri
    Wu, Wenjing
    Chen, Mingxing
    Liu, Song
    Hone, James
    Yao, Wang
    Basov, D. N.
    Zhu, Xiaoyang
    Pasupathy, Abhay N.
    NATURE PHYSICS, 2021, 17 (06) : 720 - +
  • [8] Reconstruction of moire lattices in twisted transition metal dichalcogenide bilayers
    Maity, Indrajit
    Maiti, Prabal K.
    Krishnamurthy, H. R.
    Jain, Manish
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [9] Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers
    Hsu, Wei-Ting
    Zhao, Zi-Ang
    Li, Lain-Jong
    Chen, Chang-Hsiao
    Chiu, Ming-Hui
    Chang, Pi-Shan
    Chou, Yi-Chia
    Chang, Wen-Hao
    ACS NANO, 2014, 8 (03) : 2951 - 2958
  • [10] Transition-metal dichalcogenide bilayers: Switching materials for spintronic and valleytronic applications
    Zibouche, Nourdine
    Philipsen, Pier
    Kuc, Agnieszka
    Heine, Thomas
    PHYSICAL REVIEW B, 2014, 90 (12)