Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour

被引:130
作者
El-Sabbagh, A. [1 ,2 ]
机构
[1] Tech Univ Clausthal, Inst Polymer Mat & Plast Engn, D-38678 Clausthal Zellerfeld, Germany
[2] Ain Shams Univ, Design & Prod Engn Dept, Cairo, Egypt
关键词
Fibres; Polymer-matrix composites (PMCs); Adhesion; Mechanical properties; Thermoplastic resin; REINFORCED POLYPROPYLENE COMPOSITES; WATER-ABSORPTION; FLAX/POLYPROPYLENE COMPOSITE; CELLULOSIC FIBERS; ECO-COMPOSITES; FLAX; BIOCOMPOSITES; PERFORMANCE;
D O I
10.1016/j.compositesb.2013.09.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance the adhesion between the natural fibre and the thermoplastic matrix, a coupling agent of maleic anhydride grafted polypropylene MAPP is applied. In literature, there are different guidelines of the optimum percentage required of MAPP. Therefore, a systematic work is carried out to optimise the MAPP percent with respect to the type of the natural fibre. Different parameters are investigated namely; Coupling agent ratio to the fibre (0%, 6.67%, 10%, 13.3%, 16.67%), coupling agent source, fibre type (flax, hemp, sisal), and fibre content (30%, 50%). Composite is produced using a kneader and the resulting material is assessed mechanically, thermally, microscopically and for water absorption. For different MAPP source and the natural fibre type, optimum MAPP to fibre ratio is found in average to range between 10% and 13.3% according to the investigated property (stiffness, strength and impact). Increase of MAPP is found to decrease the melting temperature. The thermal behaviour is also linked to the copolymer molecular weight. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 39 条
[1]   Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites [J].
Agrawal, R ;
Saxena, NS ;
Sharma, KB ;
Thomas, S ;
Sreekala, MS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 277 (1-2) :77-82
[2]   Mechanical properties of flax fibre/polypropylene composites.: Influence of fibre/matrix modification and glass fibre hybridization [J].
Arbelaiz, A ;
Fernández, B ;
Cantero, G ;
Llano-Ponte, R ;
Valea, A ;
Mondragon, I .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (12) :1637-1644
[3]  
BHADURI SK, 1994, CELL CHEM TECHNOL, V28, P391
[4]  
Bledzki A.K., 2002, Natural and wood fibre reinforcement in polymers
[5]   Natural fiber eco-composites [J].
Bogoeva-Gaceva, G. ;
Avella, M. ;
Malinconico, M. ;
Buzarovska, A. ;
Grozdanov, A. ;
Gentile, G. ;
Errico, M. E. .
POLYMER COMPOSITES, 2007, 28 (01) :98-107
[6]  
Bos H., 2004, THESIS TU EINDHOVEN
[7]   Mechanical properties of short-flax-fibre reinforced compounds [J].
Bos, Harriette L. ;
Muessig, Joerg ;
van den Oever, Martien J. A. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (10) :1591-1604
[8]   Multi-scale morphological characterisation of flax: From the stem to the fibrils [J].
Charlet, K. ;
Jernot, J. P. ;
Eve, S. ;
Gomina, M. ;
Breard, J. .
CARBOHYDRATE POLYMERS, 2010, 82 (01) :54-61
[9]   Jute fibre/polypropylene composites II.: Thermal, hydrothermal and dynamic mechanical behaviour [J].
Doan, Thi-Thu-Loan ;
Brodowsky, Hanna ;
Maeder, Edith .
COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (13) :2707-2714
[10]   Processing and Modeling of the Mechanical Behavior of Natural Fiber Thermoplastic Composite: Flax/Polypropylene [J].
EI-Sabbagh, A. ;
Steuernagel, L. ;
Ziegmann, G. .
POLYMER COMPOSITES, 2009, 30 (04) :510-519