Dielectric Haloscopes: A New Way to Detect Axion Dark Matter

被引:310
作者
Caldwell, Allen [1 ]
Dvali, Gia [1 ,2 ,3 ]
Majorovits, Bela [1 ]
Millar, Alexander [1 ]
Raffelt, Georg [1 ]
Redondo, Javier [1 ,4 ]
Reimann, Olaf [1 ]
Simon, Frank [1 ]
Steffen, Frank [1 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Theresienstr 37, D-80333 Munich, Germany
[3] NYU, CCPP, 550 1St Ave, New York, NY 10003 USA
[4] Univ Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
基金
欧盟地平线“2020”;
关键词
STRONG CP PROBLEM; INVISIBLE-AXION; COSMIC AXIONS; SEARCHES;
D O I
10.1103/PhysRevLett.118.091801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new strategy to search for dark matter axions in the mass range of 40-400 mu eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m(2) area contained in a 10 T field.
引用
收藏
页数:6
相关论文
共 42 条
[1]   A COSMOLOGICAL BOUND ON THE INVISIBLE AXION [J].
ABBOTT, LF ;
SIKIVIE, P .
PHYSICS LETTERS B, 1983, 120 (1-3) :133-136
[2]   Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance [J].
Arvanitaki, Asimina ;
Geraci, Andrew A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (16)
[3]   SQUID-Based Microwave Cavity Search for Dark-Matter Axions [J].
Asztalos, S. J. ;
Carosi, G. ;
Hagmann, C. ;
Kinion, D. ;
van Bibber, K. ;
Hotz, M. ;
Rosenberg, L. J. ;
Rybka, G. ;
Hoskins, J. ;
Hwang, J. ;
Sikivie, P. ;
Tanner, D. B. ;
Bradley, R. ;
Clarke, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[4]   Improved experimental limit on the electric dipole moment of the neutron [J].
Baker, C. A. ;
Doyle, D. D. ;
Geltenbort, P. ;
Green, K. ;
van der Grinten, M. G. D. ;
Harris, P. G. ;
Iaydjiev, P. ;
Ivanov, S. N. ;
May, D. J. R. ;
Pendlebury, J. M. ;
Richardson, J. D. ;
Shiers, D. ;
Smith, K. F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[5]   Prospects for searching axionlike particle dark matter with dipole, toroidal, and wiggler magnets [J].
Baker, Oliver K. ;
Betz, Michael ;
Caspers, Fritz ;
Jaeckel, Joerg ;
Lindner, Axel ;
Ringwald, Andreas ;
Semertzidis, Yannis ;
Sikivie, Pierre ;
Zioutas, Konstantin .
PHYSICAL REVIEW D, 2012, 85 (03)
[6]   Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism [J].
Ballesteros, Guillermo ;
Redondo, Javier ;
Ringwald, Andreas ;
Tamarit, Carlos .
PHYSICAL REVIEW LETTERS, 2017, 118 (07)
[7]   Calculation of the axion mass based on high-temperature lattice quantum chromodynamics [J].
Borsanyi, S. ;
Fodor, Z. ;
Guenther, J. ;
Kampert, K. -H. ;
Katz, S. D. ;
Kawanai, T. ;
Kovacs, T. G. ;
Mages, S. W. ;
Pasztor, A. ;
Pittler, F. ;
Redondo, J. ;
Ringwald, A. ;
Szabo, K. K. .
NATURE, 2016, 539 (7627) :69-+
[8]   First Results from a Microwave Cavity Axion Search at 24 μeV [J].
Brubaker, B. M. ;
Zhong, L. ;
Gurevich, Y. V. ;
Cahn, S. B. ;
Lamoreaux, S. K. ;
Simanovskaia, M. ;
Root, J. R. ;
Lewis, S. M. ;
Al Kenany, S. ;
Backes, K. M. ;
Urdinaran, I. ;
Rapidis, N. M. ;
Shokair, T. M. ;
van Bibber, K. A. ;
Palken, D. A. ;
Malnou, M. ;
Kindel, W. F. ;
Anil, M. A. ;
Lehnert, K. W. ;
Carosi, G. .
PHYSICAL REVIEW LETTERS, 2017, 118 (06)
[9]   Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr) [J].
Budker, Dmitry ;
Graham, Peter W. ;
Ledbetter, Micah ;
Rajendran, Surjeet ;
Sushkov, Alexander O. .
PHYSICAL REVIEW X, 2014, 4 (02)
[10]  
Carosi G., 2016, CAVITY BASED SEARCHE