GENERALIZED HARISH-CHANDRA DESCENT, GELFAND PAIRS, AND AN ARCHIMEDEAN ANALOG OF JACQUET-RALLIS'S THEOREM

被引:58
作者
Aizenbud, Avraham [1 ]
Gourevitch, Dmitry [2 ]
Sayag, Eitan [3 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, IL-76100 Rehovot, Israel
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
LOCAL-FIELD F; REPRESENTATIONS; ORBITS; SPACES; FORMS;
D O I
10.1215/00127094-2009-044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of this article, we generalize a descent technique due to Harish-Chandra to the case of a reductive group acting on a smooth affine variety both defined over an arbitrary local field F of characteristic zero. Our main tool is the Luna slice theorem. In the second part, we apply this technique to symmetric pairs. In particular, we prove that the pairs (GL(n+k) (F), GL(n) (F) x GL(k)(F)) and (GL(n) (E), GL(n) (F)) are Gelfand pairs for any local field F and its quadratic extension E. In the non-Archimedean case, the first result was proved earlier by Jacquet and Rallis [JR] and the second result was proved by Flicker [F]. We also prove that any conjugation-invariant distribution on GL(n) (F) is invariant with respect to transposition. For non-Archimedean F, the latter is a classical theorem of Gelfand and Kazhdan.
引用
收藏
页码:509 / 567
页数:59
相关论文
共 42 条
[1]  
AIZENBUD A, 2002, ISRAEL J MA IN PRESS
[2]  
AIZENBUD A, ARXIV08112768V1MATHR
[3]  
AIZENBUD A, T AM MATH S IN PRESS
[4]  
AIZENBUD A, ANN MATH IN PRESS
[5]  
AIZENBUD A, ARXIV08101853V1MATHR
[6]  
Aizenbud A, 2009, MATH Z, V261, P239, DOI 10.1007/s00209-008-0318-5
[7]   Schwartz Functions on Nash Manifolds [J].
Aizenbud, Avraham ;
Gourevitch, Dmitry .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[8]   (GLn+1(F), GLn(F)) is a Gelfand pair for any local field F [J].
Aizenbud, Avraham ;
Gourevitch, Dmitry ;
Sayag, Eitan .
COMPOSITIO MATHEMATICA, 2008, 144 (06) :1504-1524
[9]  
[Anonymous], 1976, Russian Math. Surveys, DOI 10.1070/RM1976v031n03ABEH001532
[10]  
[Anonymous], REGULARITY INVARIANT