Oscillating solutions of a nonlinear fourth order ordinary differential equation

被引:18
作者
Amster, Pablo
Mariani, Maria Cristina [1 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Univ Buenos Aires, Dept Matemat, FCEyN, RA-1428 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
nonlinear ordinary differential equation; multi-ion electrodiffusion theory; semiconductors modelling;
D O I
10.1016/j.jmaa.2006.02.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of periodic solutions for a nonlinear fourth order ordinary differential equation. Under suitable conditions we prove the existence of at least one solution of the problem applying coincidence degree theory and the method of upper and lower solutions. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1133 / 1141
页数:9
相关论文
共 13 条
[1]   Periodic solutions of a resonant third-order equation [J].
Amster, P ;
De Nápoli, P ;
Mariani, MC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :399-410
[2]  
Buffoni B., 1996, Journal of Dynamics and Differential Equations, V8, P221
[3]  
Collet P., 1990, INSTABILITIES FRONTS
[4]  
Grossinho M., 1994, PORT MATH, V51, P375
[5]   The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation [J].
Grossinho, MR ;
Tersian, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) :417-431
[6]  
J?ngel A., 2001, QUASI HYDRODYNAMIC S
[7]   A FAMILY OF DIFFERENTIAL-EQUATIONS ARISING FROM MULTI-ION ELECTRODIFFUSION [J].
LEUCHTAG, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (06) :1317-1320
[8]  
Mawhin J., 2000, B SOC ESPANOLA MATEM, V16, P45
[9]  
MAWHIN J, 1979, NSF CBMS REG C MATH, V40
[10]  
Peletier L.A., 2001, Spatial Patterns. Higher Order Models in Physics and Mechanics