Sharp L2 → Lq bounds on spectral projectors for low regularity metrics

被引:0
作者
Smith, Hart F. [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish L-2 -> L-q mapping bounds for unit-width spectral projectors associated to elliptic operators with C-s coefficients, in the case 1 <= s <= 2. Examples of Smith-Sogge [6] show that these bounds are best possible for q less than the critical index. We also show that LOO bounds hold with the same exponent as in the case of smooth coefficients.
引用
收藏
页码:967 / 974
页数:8
相关论文
共 50 条
[42]   An Lq(L2)-theory of the generalized Stokes resolvent system in infinite cylinders [J].
Farwig, Reinhard ;
Ri, Myong-Hwan .
STUDIA MATHEMATICA, 2007, 178 (03) :197-216
[43]   Stability and robustness of the l2/lq-minimization for block sparse recovery [J].
Gao, Yi ;
Peng, Jigen ;
Yue, Shigang .
SIGNAL PROCESSING, 2017, 137 :287-297
[44]   A smoothing Newton-type method for solving the L2 spectral estimation problem with lower and upper bounds [J].
Chen Ling ;
Hongxia Yin ;
Guanglu Zhou .
Computational Optimization and Applications, 2011, 50 :351-378
[45]   L2 Extensions with Singular Metrics on Kähler Manifolds [J].
Xiangyu Zhou ;
Langfeng Zhu .
Acta Mathematica Scientia, 2021, 41 :2021-2038
[46]   L2 harmonic forms for a class of complete Kahler metrics [J].
Hunsicker, E .
MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (02) :339-349
[47]   Pointwise bounds for L2 eigenfunctions on locally symmetric spaces [J].
Ji, Lizhen ;
Weber, Andreas .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (04) :387-401
[48]   Pointwise bounds for L2 eigenfunctions on locally symmetric spaces [J].
Lizhen Ji ;
Andreas Weber .
Annals of Global Analysis and Geometry, 2008, 34 :387-401
[49]   L2 curvature bounds on manifolds with bounded Ricci curvature [J].
Jiang, Wenshuai ;
Naber, Aaron .
ANNALS OF MATHEMATICS, 2021, 193 (01) :107-222
[50]   EXPLICIT INTERPOLATION BOUNDS BETWEEN HARDY SPACE AND L2 [J].
Bui, H. -Q. ;
Laugesen, R. S. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 95 (02) :158-168