Sharp L2 → Lq bounds on spectral projectors for low regularity metrics

被引:0
作者
Smith, Hart F. [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish L-2 -> L-q mapping bounds for unit-width spectral projectors associated to elliptic operators with C-s coefficients, in the case 1 <= s <= 2. Examples of Smith-Sogge [6] show that these bounds are best possible for q less than the critical index. We also show that LOO bounds hold with the same exponent as in the case of smooth coefficients.
引用
收藏
页码:967 / 974
页数:8
相关论文
共 50 条
[31]   L2 BOUNDS FOR A MAXIMAL DIRECTIONAL HILBERT TRANSFORM [J].
Kim, Jongchon ;
Pramanik, Malabika .
ANALYSIS & PDE, 2022, 15 (03) :753-794
[32]   Approximate Pattern Matching with the L1, L2 and L∞ Metrics [J].
Lipsky, Ohad ;
Porat, Ely .
ALGORITHMICA, 2011, 60 (02) :335-348
[33]   Approximated Pattern Matching with the L1, L2 and L∞ Metrics [J].
Lipsky, Ohad ;
Porat, Ely .
STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2008, 5280 :212-223
[34]   Approximate Pattern Matching with the L1, L2 and L∞ Metrics [J].
Ohad Lipsky ;
Ely Porat .
Algorithmica, 2011, 60 :335-348
[35]   L2,λ-regularity for nonlinear elliptic systems of second order [J].
Danecek, J ;
Viszus, E .
APPLIED NONLINEAR ANALYSIS, 1999, :33-40
[36]   L2,Φ regularity for nonlinear elliptic systems of second order [J].
Danecek, Josef ;
Viszus, Eugen .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
[37]   The sharp affine L2 Sobolev trace inequality and variants [J].
De Napoli, P. L. ;
Haddad, J. ;
Jimenez, C. H. ;
Montenegro, M. .
MATHEMATISCHE ANNALEN, 2018, 370 (1-2) :287-308
[38]   Maximal L2 regularity for Dirichlet problems in Hilbert spaces [J].
Da Prato, Giuseppe ;
Lunardi, Alessandra .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (06) :741-765
[39]   Some Sharp L2 Inequalities for Dirac Type Operators [J].
Balinsky, Alexander ;
Ryan, John .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[40]   Sharp L2 log L inequalities for the Haar system and martingale transforms [J].
Osekowski, Adam .
STATISTICS & PROBABILITY LETTERS, 2014, 94 :91-97