Hyperspectral Image Classification Via Shape-Adaptive Joint Sparse Representation

被引:113
作者
Fu, Wei [1 ]
Li, Shutao [1 ]
Fang, Leyuan [1 ]
Kang, Xudong [1 ]
Benediktsson, Jon Atli [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
基金
中国国家自然科学基金;
关键词
Classification; hyperspectral image (HSI); shapeadaptive algorithm; sparse representation; SPECTRAL-SPATIAL CLASSIFICATION; COLLABORATIVE-REPRESENTATION; APPROXIMATION; REDUCTION;
D O I
10.1109/JSTARS.2015.2477364
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new shape-adaptive joint sparse representation classification (SAJSRC) method is proposed for hyperspectral images (HSIs) classification. The proposed method adaptively explores the spatial information and incorporates it into a joint sparse representation classifier. First, the HSI is transformed with the principal component analysis (PCA) algorithm. Then, the first principal component (PC), which represents the most spatial variation in the HSI, is used in the shape-adaptive algorithm to construct a shape-adaptive local smooth region for each test pixel. Unlike the fixed-sized window used in other sparse representationbased methods, the shape-adaptive regions have adaptive sizes and shapes, and conform to the spatial structure of the HSI as far as possible. Finally, the label of the test pixel is determined by applying the joint sparse representation classifier to the first several PCs of pixels within the corresponding SA region. According to the experiments performed on several HSIs, the proposed SAJSRC method outperforms some widely used HSIs classification approaches.
引用
收藏
页码:556 / 567
页数:12
相关论文
共 48 条
[1]   Estimation of the Number of Endmembers Using Robust Outlier Detection Method [J].
Andreou, Charoula ;
Karathanassi, Vassilia .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (01) :247-256
[2]  
[Anonymous], 2002, Surv. Land Inf. Syst.
[3]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[4]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[5]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[6]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[7]   Spectral Unmixing-Based Crop Residue Estimation Using Hyperspectral Remote Sensing Data: A Case Study at Purdue University [J].
Chi, Junhwa ;
Crawford, Melba M. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2531-2539
[8]   Tree Species Classification in Boreal Forests With Hyperspectral Data [J].
Dalponte, Michele ;
Orka, Hans Ole ;
Gobakken, Terje ;
Gianelle, Damiano ;
Naesset, Erik .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05) :2632-2645
[9]   Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation [J].
Fang, Leyuan ;
Li, Shutao ;
Kang, Xudong ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12) :7738-7749
[10]   Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation [J].
Fang, Leyuan ;
Li, Shutao ;
McNabb, Ryan P. ;
Nie, Qing ;
Kuo, Anthony N. ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (11) :2034-2049