High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes

被引:291
作者
Im, Hyeongwook [1 ]
Kim, Taewoo [1 ]
Song, Hyelynn [1 ]
Choi, Jongho [1 ]
Park, Jae Sung [2 ]
Ovalle-Robles, Raquel [3 ]
Yang, Hee Doo [4 ]
Kihm, Kenneth D. [5 ]
Baughman, Ray H. [6 ]
Lee, Hong H. [7 ]
Kang, Tae June [8 ]
Kim, Yong Hyup [1 ,9 ]
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151742, South Korea
[2] Seoul Natl Univ, Inst Adv Machinery & Design, Seoul 151742, South Korea
[3] Lintec America Inc, Nanosci & Technol Ctr, Richardson, TX 75081 USA
[4] Pusan Natl Univ, Dept NanoMechatron Engn, Coll Nanosci & Nanotechnol, Busan 609735, South Korea
[5] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[6] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75080 USA
[7] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151744, South Korea
[8] Inha Univ, Dept Mech Engn, Incheon 22212, South Korea
[9] Seoul Natl Univ, Inst Adv Aerosp Technol, Seoul 151742, South Korea
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
新加坡国家研究基金会;
关键词
THERMOGALVANIC CELLS; MASS-TRANSFER; PERFORMANCE; PURIFICATION; THERMOELECTRICS; THERMODYNAMICS; COEFFICIENTS; ENHANCEMENT; GENERATION; KINETICS;
D O I
10.1038/ncomms10600
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m(-2) is obtained for a 51 degrees C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated.
引用
收藏
页数:9
相关论文
共 34 条
[1]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[2]   Measurement of mass-transfer coefficients by an electrochemical technique [J].
Canizares, P. ;
Garcia-Gomez, J. ;
Fernandez de Marcos, I. ;
Rodrigo, M. A. ;
Lobato, J. .
JOURNAL OF CHEMICAL EDUCATION, 2006, 83 (08) :1204-1207
[3]   THE TEMPERATURE COEFFICIENTS OF ELECTRODE POTENTIALS - THE ISOTHERMAL AND THERMAL COEFFICIENTS - THE STANDARD IONIC ENTROPY OF ELECTROCHEMICAL TRANSPORT OF THE HYDROGEN ION [J].
DEBETHUNE, AJ ;
LICHT, TS ;
SWENDEMAN, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1959, 106 (07) :616-625
[4]   Purification of carbon nanotubes by dynamic oxidation in air [J].
Dementev, Nikolay ;
Osswald, Sebastian ;
Gogotsi, Yury ;
Borguet, Eric .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (42) :7904-7908
[5]   Raman spectroscopy on isolated single wall carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Jorio, A ;
Souza, AG ;
Saito, R .
CARBON, 2002, 40 (12) :2043-2061
[6]   Thermodynamics of non-isothermal systems [J].
Eastman, ED .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1926, 48 :1482-1493
[7]   Theory of the soret effect [J].
Eastman, ED .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1928, 50 :283-291
[8]   Purification of single-wall carbon nanotubes by electrochemical oxidation [J].
Fang, HT ;
Liu, CG ;
Chang, L ;
Feng, L ;
Min, L ;
Cheng, HM .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5744-5750
[9]   Energy-storage technologies and electricity generation [J].
Hall, Peter J. ;
Bain, Euan J. .
ENERGY POLICY, 2008, 36 (12) :4352-4355
[10]   Multilayered Carbon Nanotube/Polymer Composite Based Thermoelectric Fabrics [J].
Hewitt, Corey A. ;
Kaiser, Alan B. ;
Roth, Siegmar ;
Craps, Matt ;
Czerw, Richard ;
Carroll, David L. .
NANO LETTERS, 2012, 12 (03) :1307-1310