Applications of Darboux transformations to the self-dual Yang-Mills equations

被引:48
作者
Nimmo, JJC
Gilson, CR
Ohta, Y
机构
[1] Univ Glasgow, Dept Math, Glasgow, Lanark, Scotland
[2] Hiroshima Univ, Dept Appl Math, Hiroshima, Japan
关键词
D O I
10.1007/BF02551200
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The linear problem associated with the self-dual Yang-Mills equations is covariant with respect to Darboux and binary Darboux transformations of almost classical hype. This technique is used to construct solutions of the problem in the form of Wronskian-like and Gramm-like determinants. The self-dual conditions can be properly realized for only the latter type of solutions.
引用
收藏
页码:239 / 246
页数:8
相关论文
共 10 条
[1]   INSTANTONS AND ALGEBRAIC GEOMETRY [J].
ATIYAH, MF ;
WARD, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :117-124
[2]   YANG-MILLS EQUATIONS AS INVERSE SCATTERING PROBLEM [J].
BELAVIN, AA ;
ZAKHAROV, VE .
PHYSICS LETTERS B, 1978, 73 (01) :53-57
[3]  
BRIHAYE Y, 1978, J MATH PHYS, V19, P2528, DOI 10.1063/1.523636
[4]   GENERAL SELF-DUAL YANG-MILLS SOLUTIONS [J].
CHRIST, NH ;
WEINBERG, EJ ;
STANTON, NK .
PHYSICAL REVIEW D, 1978, 18 (06) :2013-2025
[5]   CONSTRUCTION OF SELF-DUAL SOLUTIONS TO SU(2) GAUGE THEORY [J].
CORRIGAN, EF ;
FAIRLIE, DB ;
YATES, RG ;
GODDARD, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 58 (03) :223-240
[6]  
DRINFELD VG, 1978, FUNCT ANAL APPL, V12, P140
[7]   DARBOUX TRANSFORMATION AND EXPLICIT SOLUTIONS OF THE KADOMTCEV-PETVIASCHVILY EQUATION, DEPENDING ON FUNCTIONAL PARAMETERS [J].
MATVEEV, VB .
LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (03) :213-216
[8]   Bilinear form approach to the self-dual Yang-Mills equations and integrable systems in (2+1)-dimension [J].
Sasa, N ;
Ohta, Y ;
Matsukidaira, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (01) :83-86
[9]  
UHLENBECK K, 1989, J DIFFER GEOM, V30, P1
[10]   The reduced self-dual Yang-Mills equation, binary and infinitesimal Darboux transformations [J].
Ustinov, NV .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) :976-985