PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II | 2019年 / 11555卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [41] Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network
    Han, Zhezhe
    Hossain, Md Moinul
    Wang, Yuwei
    Li, Jian
    Xu, Chuanlong
    APPLIED ENERGY, 2020, 259 (259)
  • [42] Stacked sparse autoencoder in cavitation noise signal data classification of hydro turbine based on power spectrum
    Kang, Ziyang
    Feng, Chi
    Wan, Xiaoqing
    Liu, Zhiliang
    Chen, Liwei
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (02) : 233 - 245
  • [43] Prediction of the chlorophyll content in pomegranate leaves based on digital image processing technology and stacked sparse autoencoder
    Peng, Yingshu
    Wang, Yi
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2019, 22 (01) : 1720 - 1732
  • [44] Fault Diagnosis for Power Batteries Based on a Stacked Sparse Autoencoder and a Convolutional Block Attention Capsule Network
    Zhou, Juan
    Zhang, Shun
    Wang, Peng
    PROCESSES, 2024, 12 (04)
  • [45] Vertebrae Segmentation via Stacked Sparse Autoencoder from Computed Tomography Images
    Qadri, Syed Furqan
    Zhao, Zhiqi
    Ai, Danni
    Ahmad, Mubashir
    Wang, Yongtian
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [46] Post-fault prediction of transient instabilities using stacked sparse autoencoder
    Mahdi, Mohammed
    Genc, V. M. Istemihan
    ELECTRIC POWER SYSTEMS RESEARCH, 2018, 164 : 243 - 252
  • [47] Sparse representation based on stacked kernel for target detection in hyperspectral imagery
    Zhao, Chunhui
    Li, Wei
    Li, Xiaohui
    Qi, Bin
    OPTIK, 2015, 126 (24): : 5633 - 5640
  • [48] Web-S4AE: a semi-supervised stacked sparse autoencoder model for web robot detection
    Rikhi Ram Jagat
    Dilip Singh Sisodia
    Pradeep Singh
    Neural Computing and Applications, 2023, 35 : 17883 - 17898
  • [49] Predicting Lymph Node Metastasis of Lung Cancer Using Stacked Sparse Autoencoder
    Wang Wei
    Wang Yisong
    Wang Lihui
    Sun Caixia
    Cheng Xinyu
    Li Zhi
    Zhang Jian
    Yang Feng
    Zhu Yuemin
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 558 - 561
  • [50] Web-S4AE: a semi-supervised stacked sparse autoencoder model for web robot detection
    Jagat, Rikhi Ram
    Sisodia, Dilip Singh
    Singh, Pradeep
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (24) : 17883 - 17898