PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II | 2019年 / 11555卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [31] Classification of Alzheimer's Disease Using Stacked Sparse Convolutional Autoencoder
    Baydargil, Husnu Baris
    Park, Jang-Sik
    Kang, Do-Young
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 891 - 895
  • [32] Cervical cancer classification using sparse stacked autoencoder and fuzzy ARTMAP
    Liaw L.C.M.
    Tan S.C.
    Goh P.Y.
    Lim C.P.
    Neural Computing and Applications, 2024, 36 (22) : 13895 - 13913
  • [33] Spectral-spatial classification of hyperspectral images using trilateral filter and stacked sparse autoencoder
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Yan, Yiming
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [34] Sparse stacked autoencoder network for complex system monitoring with industrial applications
    Deng, Ziwei
    Li, Yuxuan
    Zhu, Hongqiu
    Huang, Keke
    Tang, Zhaohui
    Wang, Zhen
    CHAOS SOLITONS & FRACTALS, 2020, 137
  • [35] Single stuck-at-faults detection using test generation vector and deep stacked-sparse-autoencoder
    Malihi, Leila
    Malihi, Razieh
    SN APPLIED SCIENCES, 2020, 2 (10):
  • [36] Single stuck-at-faults detection using test generation vector and deep stacked-sparse-autoencoder
    Leila Malihi
    Razieh Malihi
    SN Applied Sciences, 2020, 2
  • [37] Unsupervised Feature Mapping via Stacked Sparse Autoencoder for Automated Detection of Large Pulmonary Nodules in CT Images
    Gupta, Anindya
    Saar, Tonis
    Martens, Olev
    Le Moullec, Yannick
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2017, 23 (06) : 59 - 63
  • [38] Intelligent evaluation method for identifying favorable shale oil areas based on improved stacked sparse autoencoder
    Xu, Rui
    Yan, Tie
    Sun, Shihui
    Qu, Jingyu
    Hou, Zhaokai
    OIL SHALE, 2025, 42 (01) : 79 - 114
  • [39] Research on Diesel Engine Fault Diagnosis Method Based on Stacked Sparse Autoencoder and Support Vector Machine
    Bai, Huajun
    Zhan, Xianbiao
    Yan, Hao
    Wen, Liang
    Yan, Yunbin
    Jia, Xisheng
    ELECTRONICS, 2022, 11 (14)
  • [40] A Stacked Sparse Autoencoder based Architecture for Punjabi and English Spoken Language Classification using MFCC features
    Arora, Vaibhav
    Sood, Pulkit
    Keshari, Kumar Utkarsh
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 269 - 272