PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II | 2019年 / 11555卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [21] SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation
    Qadri, Syed Furqan
    Shen, Linlin
    Ahmad, Mubashir
    Qadri, Salman
    Zareen, Syeda Shamaila
    Akbar, Muhammad Azeem
    MATHEMATICS, 2022, 10 (05)
  • [22] Remaining Useful Life Prediction Based on Stacked Sparse Autoencoder and Echo State Network
    Yang, Yinghua
    Yao, Dandan
    Liu, Xiaozhi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 5922 - 5926
  • [23] Cost Prediction of Tunnel Construction Based on Interpretative Structural Model and Stacked Sparse Autoencoder
    Zhou, Jing-Qun
    Liu, Qi-Ming
    Ma, Chang-Xi
    Li, Dong
    ENGINEERING LETTERS, 2024, 32 (10) : 1966 - 1980
  • [24] Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology
    Fu, Lvhui
    Sun, Jun
    Wang, Simin
    Xu, Min
    Yao, Kunshan
    Cao, Yan
    Tang, Ningqiu
    JOURNAL OF FOOD PROCESS ENGINEERING, 2022, 45 (09)
  • [25] Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis
    Zhang, Yu-Dong
    Khan, Muhammad Attique
    Zhu, Ziquan
    Wang, Shui-Hua
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3145 - 3162
  • [26] Five-category classification of pathological brain images based on deep stacked sparse autoencoder
    Jia, Wenjuan
    Muhammad, Khan
    Wang, Shui-Hua
    Zhang, Yu-Dong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (04) : 4045 - 4064
  • [27] Improved Heart Disease Prediction Using Particle Swarm Optimization Based Stacked Sparse Autoencoder
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    ELECTRONICS, 2021, 10 (19)
  • [28] Five-category classification of pathological brain images based on deep stacked sparse autoencoder
    Wenjuan Jia
    Khan Muhammad
    Shui-Hua Wang
    Yu-Dong Zhang
    Multimedia Tools and Applications, 2019, 78 : 4045 - 4064
  • [29] Blockage Location Algorithm of Multi-cylinder Fuel Injectors Based on Stacked Sparse Autoencoder
    Wang, Jian
    Huang, Ying
    Gao, Xiaoyu
    Wang, Tuo
    Wang, Xu
    Hui, Jiahe
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (10): : 3706 - 3717
  • [30] Spectral-Spatial Classification of Hyperspectral Imagery Based on Stacked Sparse Autoencoder and Random Forest
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Cui, Bing
    Liu, Wu
    Qi, Bin
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 47 - 63