PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [21] Automatic Digital Modulation Recognition Based on Stacked Sparse AutoEncoder
    Bouchou, Mohamed
    Wang, Hua
    Lakhdari, Mohammed El Hadi
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT 2017), 2017, : 28 - 32
  • [22] Intrusion Detection Method Based on Stacked Sparse Autoencoder and Sliced GRU for Connected Healthcare Systems
    Gu, Zhaoyang
    Wang, Liangliang
    Li, Jinguo
    Wen, Mi
    Liu, Yuping
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (02) : 2061 - 2074
  • [23] Intrusion Detection Method Based on Stacked Sparse Autoencoder and Sliced GRU for Connected Healthcare Systems
    Zhaoyang Gu
    Liangliang Wang
    Jinguo Li
    Mi Wen
    Yuping Liu
    Arabian Journal for Science and Engineering, 2023, 48 : 2061 - 2074
  • [24] Stacked Autoencoder Based Feature Extraction and Superpixel Generation for Multifrequency PolSAR Image Classification
    Gadhiya, Tushar
    Tangirala, Sumanth
    Roy, Anil K.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 331 - 339
  • [25] Nonlocal, local and global preserving stacked autoencoder based fault detection method for nonlinear process monitoring
    Yang, Jingchao
    Wang, Li
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 235
  • [26] Stacked Sparse Autoencoder Based Fault Detection and Location Method for Modular Five-Level Converters
    Yin, Qiaoxuan
    Duan, Bin
    Shen, Mengjun
    Qu, Xiangshuai
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 1580 - 1585
  • [27] Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images
    Xu, Jun
    Xiang, Lei
    Liu, Qingshan
    Gilmore, Hannah
    Wu, Jianzhong
    Tang, Jinghai
    Madabhushi, Anant
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (01) : 119 - 130
  • [28] Deep Sparse Representation Classification with Stacked Autoencoder
    Xu, Bingxin
    Zhou, Xiuling
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 73 - 77
  • [29] Sparse Inversion of Stacked Autoencoder Classification Machines
    Sarishvili, A.
    Jirstrand, M.
    Adrian, B.
    Wirsen, A.
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4, 2023, 465 : 617 - 631
  • [30] Weighted time series fault diagnosis based on a stacked sparse autoencoder
    Lv, Feiya
    Wen, Chenglin
    Liu, Meiqin
    Bao, Zhejing
    JOURNAL OF CHEMOMETRICS, 2017, 31 (09)