PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [1] Classification of PolSAR Images Based on Adaptive Nonlocal Stacked Sparse Autoencoder
    Hu, Yuanyuan
    Fan, Jianchao
    Wang, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (07) : 1050 - 1054
  • [2] PolSAR image classification based on multi-scale stacked sparse autoencoder
    Zhang, Lu
    Jiao, Licheng
    Ma, Wenping
    Duan, Yiping
    Zhang, Dan
    NEUROCOMPUTING, 2019, 351 : 167 - 179
  • [3] Scattering feature dimension reduction of multitemporal fully PolSAR image based on Stacked Sparse AutoEncoder
    Li H.
    Guo J.
    Han W.
    Liu Y.
    Ning J.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (11): : 1379 - 1391
  • [4] Electricity theft detection based on stacked sparse denoising autoencoder
    Huang, Yifan
    Xu, Qifeng
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 125
  • [5] Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information
    Zhang, Lu
    Ma, Wenping
    Zhang, Dan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) : 1359 - 1363
  • [6] Network intrusion detection based on Contractive Sparse Stacked Denoising Autoencoder
    Lu, Jizhao
    Meng, Huiping
    Li, Wencui
    Liu, Yue
    Guo, Yihao
    Yang, Yang
    2021 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2021,
  • [7] Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model
    Fakieh, Bahjat
    Al-Ghamdi, Abdullah S. Al-Malaise
    Ragab, Mahmoud
    HEALTHCARE, 2022, 10 (06)
  • [8] Stacked sparse autoencoder and case-based postprocessing method for nucleus detection
    Li, Siqi
    Jiang, Huiyan
    Bai, Jie
    Liu, Ye
    Yao, Yu-dong
    NEUROCOMPUTING, 2019, 359 : 494 - 508
  • [9] Vision-Based Lane Departure Detection Using a Stacked Sparse Autoencoder
    Wang, Zengcai
    Wang, Xiaojin
    Zhao, Lei
    Zhang, Guoxin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [10] Stacked Sparse Autoencoder based Automatic Detection of Ripples and Fast Ripples in Epilepsy
    Qin, Hongzhen
    Wu, Min
    Wan, Xiongbo
    Du, Yuxiao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 2833 - 2837