PolSAR Marine Aquaculture Detection Based on Nonlocal Stacked Sparse Autoencoder

被引:0
|
作者
Fan, Jianchao [1 ]
Liu, Xiaoxin [2 ]
Hu, Yuanyuan [3 ]
Han, Min [3 ]
机构
[1] Natl Marine Environm Monitoring Ctr, Dept Ocean Remote Sensing, Dalian 116023, Liaoning, Peoples R China
[2] Washington Univ, Comp Sci & Engn, St Louis, MO 63130 USA
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II | 2019年 / 11555卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Polarimetric SAR; Remote sensing images; Nonlocal spatial information; Stacked sparse autoencoder; Classification; IMAGE CLASSIFICATION;
D O I
10.1007/978-3-030-22808-8_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of deep learning, stacked sparse autoencoder (SSAE) has the advantages of simple model and self-learning of features. Nonlocal spatial information is utilized to assist SSAE construct NSSAE to improve the precision in this paper. Experimental results demonstrate the superiority of nonlocal SSAE methods on marine target recognition.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [1] Classification of PolSAR Images Based on Adaptive Nonlocal Stacked Sparse Autoencoder
    Hu, Yuanyuan
    Fan, Jianchao
    Wang, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (07) : 1050 - 1054
  • [2] PolSAR image classification based on multi-scale stacked sparse autoencoder
    Zhang, Lu
    Jiao, Licheng
    Ma, Wenping
    Duan, Yiping
    Zhang, Dan
    NEUROCOMPUTING, 2019, 351 : 167 - 179
  • [3] Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information
    Zhang, Lu
    Ma, Wenping
    Zhang, Dan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) : 1359 - 1363
  • [4] Stacked sparse autoencoder and case-based postprocessing method for nucleus detection
    Li, Siqi
    Jiang, Huiyan
    Bai, Jie
    Liu, Ye
    Yao, Yu-dong
    NEUROCOMPUTING, 2019, 359 : 494 - 508
  • [5] Stacked Sparse Autoencoder based Automatic Detection of Ripples and Fast Ripples in Epilepsy
    Qin, Hongzhen
    Wu, Min
    Wan, Xiongbo
    Du, Yuxiao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 2833 - 2837
  • [6] Abnormal Condition Monitoring Based on Stacked Sparse Autoencoder
    Qiao, Lin
    Qu, Ruiting
    Song, Qing
    Liu, Biqi
    Liu, Xiaoqiang
    Liu, Yubo
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 129 - 138
  • [7] Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder
    Chen, Lili
    Hao, Yaru
    Hu, Xue
    PLOS ONE, 2019, 14 (04):
  • [8] Network Intrusion Detection Based on Stacked Sparse Autoencoder and Binary Tree Ensemble Method
    Zhang, Baoan
    Yu, Yanhua
    Li, Jie
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2018,
  • [9] Intrusion Detection Method Based on Stacked Sparse Autoencoder and Sliced GRU for Connected Healthcare Systems
    Zhaoyang Gu
    Liangliang Wang
    Jinguo Li
    Mi Wen
    Yuping Liu
    Arabian Journal for Science and Engineering, 2023, 48 : 2061 - 2074
  • [10] Intrusion Detection Method Based on Stacked Sparse Autoencoder and Sliced GRU for Connected Healthcare Systems
    Gu, Zhaoyang
    Wang, Liangliang
    Li, Jinguo
    Wen, Mi
    Liu, Yuping
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (02) : 2061 - 2074