Bifurcation of Mixed Mode Reaction-Diffusion Patterns in Spherical Caps

被引:2
|
作者
Charette, Laurent [1 ]
Nagata, Wayne
机构
[1] Univ British Columbia, Inst Appl Math, Vancouver, BC V6T 1Z2, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Multiple bifurcation; reaction-diffusion; spherical cap domain; DOMAIN GROWTH; MORPHOGENESIS; MECHANISM;
D O I
10.1142/S0218127418300173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study pattern formation in a chemical reaction-diffusion system of partial differential equations in spherical cap domains. For certain critical values of parameters corresponding to cap flatness, cap radius, and chemical precursor concentrations, the unpatterned solution is unstable to two different linear normal modes. We use center manifold and normal form reductions to analyze the existence and stability of pure and mixed modes of nonlinear patterned solutions of the reaction-diffusion system, for parameters with two cases of critical values. In one case, the system reduces to a well known example of mode interaction. In the other case, the mode interaction is new, due to very small quadratic terms in the normal form.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] On the applications of a global bifurcation theorem to the reaction-diffusion systems
    Huy, NB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) : 1199 - 1206
  • [42] Double Hopf Bifurcation in Delayed reaction-diffusion Systems
    Du, Yanfei
    Niu, Ben
    Guo, Yuxiao
    Wei, Junjie
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (01) : 313 - 358
  • [43] Invariant manifolds and bifurcation for quasilinear reaction-diffusion systems
    1600, Pergamon Press Inc, Tarrytown, NY, USA (23):
  • [44] Smooth bifurcation for variational inequalities and reaction-diffusion systems
    Kucera, M
    Recke, L
    Eisner, J
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1125 - 1133
  • [45] BIFURCATION POINTS OF REACTION-DIFFUSION SYSTEMS WITH UNILATERAL CONDITIONS
    DRABEK, P
    KUCERA, M
    MIKOVA, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1985, 35 (04) : 639 - 660
  • [46] MULTIPARAMETER BIFURCATION FOR SOME PARTICULAR REACTION-DIFFUSION SYSTEMS
    ESQUINAS, J
    LOPEZGOMEZ, J
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 112 : 135 - 143
  • [47] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 761 - 764
  • [48] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [49] BIFURCATION FROM INFINITY WITH APPLICATIONS TO REACTION-DIFFUSION SYSTEMS
    Aida, Chihiro
    Chen, Chao-Nien
    Kuto, Kousuke
    Ninomiya, Hirokazu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3031 - 3055
  • [50] Hopf bifurcation in spatially extended reaction-diffusion systems
    Schneider, G
    JOURNAL OF NONLINEAR SCIENCE, 1998, 8 (01) : 17 - 41