Bifurcation of Mixed Mode Reaction-Diffusion Patterns in Spherical Caps

被引:2
|
作者
Charette, Laurent [1 ]
Nagata, Wayne
机构
[1] Univ British Columbia, Inst Appl Math, Vancouver, BC V6T 1Z2, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Multiple bifurcation; reaction-diffusion; spherical cap domain; DOMAIN GROWTH; MORPHOGENESIS; MECHANISM;
D O I
10.1142/S0218127418300173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study pattern formation in a chemical reaction-diffusion system of partial differential equations in spherical cap domains. For certain critical values of parameters corresponding to cap flatness, cap radius, and chemical precursor concentrations, the unpatterned solution is unstable to two different linear normal modes. We use center manifold and normal form reductions to analyze the existence and stability of pure and mixed modes of nonlinear patterned solutions of the reaction-diffusion system, for parameters with two cases of critical values. In one case, the system reduces to a well known example of mode interaction. In the other case, the mode interaction is new, due to very small quadratic terms in the normal form.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Bifurcation points for a reaction-diffusion system with two inequalities
    Eisner, Jan
    Kucera, Milan
    Vaeth, Martin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 176 - 194
  • [32] On the applications of a global bifurcation theorem to the reaction-diffusion systems
    Huy, Nguyen Bich
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 27 (10): : 1199 - 1206
  • [33] Global bifurcation for quasivariational inequalities of reaction-diffusion type
    Baltaev, J. I.
    Kucera, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) : 917 - 928
  • [34] Bifurcation Analysis of a Generic Reaction-Diffusion Turing Model
    Liu, Ping
    Shi, Junping
    Wang, Rui
    Wang, Yuwen
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [35] BIFURCATION POINTS AND EIGENVALUES OF INEQUALITIES OF REACTION-DIFFUSION TYPE
    QUITTNER, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 380 : 1 - 13
  • [36] Mosaic Patterns in Reaction-Diffusion Systems
    Ezzeddine, Dalia
    Sultan, Rabih
    12TH CHAOTIC MODELING AND SIMULATION INTERNATIONAL CONFERENCE, 2020, : 67 - 74
  • [37] LOCALIZED PATTERNS IN REACTION-DIFFUSION SYSTEMS
    KOGA, S
    KURAMOTO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01): : 106 - 121
  • [38] Hopf bifurcation in a reaction-diffusion system with conservation of mass
    Sakamoto, Takashi Okuda
    NONLINEARITY, 2013, 26 (07) : 2027 - 2049
  • [39] Bifurcation of solutions to reaction-diffusion systems with jumping nonlinearities
    Eisner, J
    Kucera, M
    APPLIED NONLINEAR ANALYSIS, 1999, : 79 - 96
  • [40] Bifurcation and Control of A Neuron Model with Delays and Reaction-diffusion
    Wang Ling
    Zhao Hongyong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3273 - 3278