Bifurcation of Mixed Mode Reaction-Diffusion Patterns in Spherical Caps

被引:2
|
作者
Charette, Laurent [1 ]
Nagata, Wayne
机构
[1] Univ British Columbia, Inst Appl Math, Vancouver, BC V6T 1Z2, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Multiple bifurcation; reaction-diffusion; spherical cap domain; DOMAIN GROWTH; MORPHOGENESIS; MECHANISM;
D O I
10.1142/S0218127418300173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study pattern formation in a chemical reaction-diffusion system of partial differential equations in spherical cap domains. For certain critical values of parameters corresponding to cap flatness, cap radius, and chemical precursor concentrations, the unpatterned solution is unstable to two different linear normal modes. We use center manifold and normal form reductions to analyze the existence and stability of pure and mixed modes of nonlinear patterned solutions of the reaction-diffusion system, for parameters with two cases of critical values. In one case, the system reduces to a well known example of mode interaction. In the other case, the mode interaction is new, due to very small quadratic terms in the normal form.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] BIFURCATION PATTERN IN REACTION-DIFFUSION DISSIPATIVE SYSTEMS
    JANSSEN, R
    HLAVACEK, V
    VANROMPAY, P
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1983, 38 (04): : 487 - 492
  • [22] Stationary patterns in a discrete bistable reaction-diffusion system:mode analysis
    邹为
    占萌
    ChinesePhysicsB, 2010, 19 (10) : 178 - 187
  • [23] Stationary patterns in a discrete bistable reaction-diffusion system: mode analysis
    Zou Wei
    Zhan Meng
    CHINESE PHYSICS B, 2010, 19 (10)
  • [24] Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion
    Chung, Jessica M.
    Peacock-Lopez, Enrique
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (17):
  • [25] Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse
    Judd, SL
    Silber, M
    PHYSICA D, 2000, 136 (1-2): : 45 - 65
  • [26] Analysis of bifurcation patterns in reaction-diffusion systems: Effect of external noise on the Brusselator model
    Yerrapragada, SS
    Bandyopadhyay, JK
    Jayaraman, VK
    Kulkarni, BD
    PHYSICAL REVIEW E, 1997, 55 (05): : 5248 - 5260
  • [27] STATIONARY-STATE AND HOPF-BIFURCATION PATTERNS IN ISOTHERMAL REACTION-DIFFUSION SYSTEMS
    KAASPETERSEN, C
    SCOTT, SK
    CHEMICAL ENGINEERING SCIENCE, 1988, 43 (02) : 391 - 392
  • [28] SECONDARY BIFURCATIONS IN SPHERICAL REACTION-DIFFUSION SYSTEMS
    HUNDING, A
    BILLING, GD
    CHEMICAL PHYSICS, 1980, 45 (03) : 359 - 369
  • [29] DNA Reaction-Diffusion Attractor Patterns
    Dorsey, Phillip James
    Scalise, Dominic
    Schulman, Rebecca
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (01) : 338 - 344
  • [30] Localized patterns in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    CHAOS, 2007, 17 (03)