Bifurcation of Mixed Mode Reaction-Diffusion Patterns in Spherical Caps

被引:2
|
作者
Charette, Laurent [1 ]
Nagata, Wayne
机构
[1] Univ British Columbia, Inst Appl Math, Vancouver, BC V6T 1Z2, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Multiple bifurcation; reaction-diffusion; spherical cap domain; DOMAIN GROWTH; MORPHOGENESIS; MECHANISM;
D O I
10.1142/S0218127418300173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study pattern formation in a chemical reaction-diffusion system of partial differential equations in spherical cap domains. For certain critical values of parameters corresponding to cap flatness, cap radius, and chemical precursor concentrations, the unpatterned solution is unstable to two different linear normal modes. We use center manifold and normal form reductions to analyze the existence and stability of pure and mixed modes of nonlinear patterned solutions of the reaction-diffusion system, for parameters with two cases of critical values. In one case, the system reduces to a well known example of mode interaction. In the other case, the mode interaction is new, due to very small quadratic terms in the normal form.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Reaction-Diffusion Patterns in Plant Tip Morphogenesis: Bifurcations on Spherical Caps
    Nagata, Wayne
    Zangeneh, Hamid R. Z.
    Holloway, David M.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (12) : 2346 - 2371
  • [2] Reaction-Diffusion Patterns in Plant Tip Morphogenesis: Bifurcations on Spherical Caps
    Wayne Nagata
    Hamid R. Z. Zangeneh
    David M. Holloway
    Bulletin of Mathematical Biology, 2013, 75 : 2346 - 2371
  • [3] Steady State Bifurcation and Patterns of Reaction-Diffusion Equations
    Zhang, Chunrui
    Zheng, Baodong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (11):
  • [4] BIFURCATION INTO WAVE PATTERNS AND TURBULENCE IN REACTION-DIFFUSION EQUATIONS
    PISMEN, LM
    PHYSICAL REVIEW A, 1981, 23 (01): : 334 - 344
  • [5] BIFURCATION AND REACTION-DIFFUSION SPECTROSCOPY
    SCHIFFMANN, Y
    MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) : 135 - 145
  • [6] BIFURCATION STUDIES IN REACTION-DIFFUSION
    MANORANJAN, VS
    MITCHELL, AR
    SLEEMAN, BD
    YU, KP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) : 27 - 37
  • [7] Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model
    Yang, Rui
    APPLICABLE ANALYSIS, 2023, 102 (02) : 672 - 693
  • [8] Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model
    Wu, Ranchao
    Zhou, Yue
    Shao, Yan
    Chen, Liping
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 597 - 610
  • [9] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [10] Oscillatory wave bifurcation and spatiotemporal patterns in fractional subhyperbolic reaction-diffusion systems
    Datsko, Bohdan
    Gafiychuk, Vasyl
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 142