The time of ultimate recovery in Gaussian risk model

被引:2
作者
Debicki, Krzysztof [1 ]
Liu, Peng [2 ]
机构
[1] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Univ Lausanne, Fac Business & Econ, Dept Actuarial Sci, UNIL Dorigny, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Gaussian risk process; Exact asymptotics; First ruin time; Last ruin time; Generalized Pickands-Piterbarg constant; RUIN PROBABILITY; PARISIAN RUIN; PASSAGE TIMES; EXTREMES; APPROXIMATION; BOUNDS;
D O I
10.1007/s10687-019-00343-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the distance RT(u) between the first and the last passage time of {X(t) - ct : t is an element of [0, T]} at level u in time horizon T is an element of (0, infinity], where X is a centered Gaussian process with stationary increments and c is an element of, given that the first passage time occurred before T. Under some tractable assumptions on X, we find Delta(u) and G(x) such that limu ->infinity RT(u)>Delta(u)x-formula> for x >= 0. We distinguish two scenarios: T < infinity and T = infinity, that lead to qualitatively different asymptotics. The obtained results provide exact asymptotics of the ultimate recovery time after the ruin in Gaussian risk model.
引用
收藏
页码:499 / 521
页数:23
相关论文
共 27 条
[1]   On Generalised Piterbarg Constants [J].
Bai, Long ;
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Luo, Li .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (01) :137-164
[2]   Brownian excursions and Parisian barrier options [J].
Chesney, M ;
JeanblancPicque, M ;
Yor, M .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :165-184
[3]  
Chiu SN, 2005, BERNOULLI, V11, P511
[4]   On the infimum attained by the reflected fractional Brownian motion [J].
Debicki, K. ;
Kosinski, K. M. .
EXTREMES, 2014, 17 (03) :431-446
[5]   Ruin probability for Gaussian integrated processes [J].
Debicki, K .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 98 (01) :151-174
[6]   EXTREMES OF γ-REFLECTED GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Liu, Peng .
ESAIM-PROBABILITY AND STATISTICS, 2018, 21 :495-535
[7]   UNIFORM TAIL APPROXIMATION OF HOMOGENOUS FUNCTIONALS OF GAUSSIAN FIELDS [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Liu, Peng .
ADVANCES IN APPLIED PROBABILITY, 2017, 49 (04) :1037-1066
[8]   Extremes of stationary Gaussian storage models [J].
Debicki, Krzysztof ;
Liu, Peng .
EXTREMES, 2016, 19 (02) :273-302
[9]   Parisian ruin over a finite-time horizon [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Ji LanPeng .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (03) :557-572
[10]  
Debicki K, 2015, J APPL PROBAB, V52, P688