Bounded universal functions for sequences of holomorphic self-maps of the disk

被引:5
作者
Bayart, Frederic [1 ]
Gorkin, Pamela [2 ]
Grivaux, Sophie [3 ]
Mortini, Raymond [4 ]
机构
[1] Univ Bordeaux 1, FR-33405 Talence, France
[2] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[3] Univ Sci & Technol Lille, Lab Paul Painleve, UMR 8524, FR-59655 Villeneuve Dascq, France
[4] Univ Paul Verlaine, Dept Math, FR-57045 Metz, France
来源
ARKIV FOR MATEMATIK | 2009年 / 47卷 / 02期
关键词
BLASCHKE PRODUCTS; INNER FUNCTIONS; OPERATORS; BALL;
D O I
10.1007/s11512-008-0083-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give several characterizations of those sequences of holomorphic self-maps {phi(n)}(n >= 1) of the unit disk for which there exists a function F in the unit ball B={f is an element of H(infinity): parallel to f parallel to(infinity)<= 1} of H(infinity) such that the orbit {F circle phi(n): n is an element of N} is locally uniformly dense in B. Such a function F is said to be a B-universal function. One of our conditions is stated in terms of the hyperbolic derivatives of the functions fn. As a consequence we will see that if phi(n) is the nth iterate of a map phi of D into D, then {phi(n)}(n >= 1) admits a B-universal function if and only if phi is a parabolic or hyperbolic automorphism of D. We show that whenever there exists a B-universal function, then this function can be chosen to be a Blaschke product. Further, if there is a B-universal function, we show that there exist uniformly closed subspaces consisting entirely of universal functions.
引用
收藏
页码:205 / 229
页数:25
相关论文
共 23 条
  • [1] An infinite dimensional vector space of universal functions for H∞ of the ball
    Aron, Richard
    Gorkin, Pamela
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (02): : 172 - 181
  • [2] BAYART F, CANAD MATH IN PRESS
  • [3] How to get universal inner functions
    Bayart, Frederic
    Gorkin, Pamela
    [J]. MATHEMATISCHE ANNALEN, 2007, 337 (04) : 875 - 886
  • [4] The Hypercyclicity Criterion for sequences of operators
    Bernal-González, L
    Grosse-Erdmann, KG
    [J]. STUDIA MATHEMATICA, 2003, 157 (01) : 17 - 32
  • [5] Bernal-Gonzalez L., 1995, Complex Variables, V27, P47
  • [6] Bourdon PS, 2003, INDIANA U MATH J, V52, P811
  • [7] CHEE PS, 1979, J AUSTR MATH SOC A, V28, P189
  • [8] Weakly compact composition operators on VMO
    Cima, JA
    Matheson, AL
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (03) : 937 - 951
  • [9] GARNETT JB, 1981, PURE APPL MATH, V96
  • [10] The existence of universal inner functions on the unit ball of Cn
    Gauthier, PM
    Xiao, J
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (03): : 409 - 413