Two synthetical five-component nonlinear integrable systems: Darboux transformations and applications

被引:0
作者
Chen, Xin [1 ]
Zha, Qi-Lao [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2020年 / 34卷 / 32期
基金
中国国家自然科学基金;
关键词
Five-component nonlinear integrable system; Darboux transformation; explicit solution; EQUATION;
D O I
10.1142/S0217979220503142
中图分类号
O59 [应用物理学];
学科分类号
摘要
A generalized 3 x 3 matrix spectral problem is investigated to generate two five-component nonlinear integrable systems, which involve an arbitrary smooth function. These systems are proven integrable in the sense of Lax pair. As the reduction cases, a four-component reaction diffusion equation and a four-component modified Korteweg-de Vries (mKdV) equation are solved by Darboux transformation approach.
引用
收藏
页数:23
相关论文
共 35 条
[1]  
Ablowitz MJ, 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   The prolongation structure of the inhomogeneous equation of the reaction-diffusion type [J].
Duan, Xiao-Juan ;
Deng, Ming ;
Zhao, Wei-Zhong ;
Wu, Ke .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (14) :3831-3837
[3]   Using symbolic computation to exactly solve a new coupled MKdV system [J].
Fan, EG .
PHYSICS LETTERS A, 2002, 299 (01) :46-48
[4]   A Hierarchy of New Nonlinear Evolution Equations and Their Bi-Hamiltonian Structures [J].
Geng Xian-Guo ;
Wang Hui .
CHINESE PHYSICS LETTERS, 2014, 31 (07)
[5]   Algebro-Geometric Integration of the Modified BelovChaltikian Lattice Hierarchy [J].
Geng, Xianguo ;
Wei, Jiao ;
Zeng, Xin .
THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 199 (02) :675-694
[6]   A new nonlinear wave equation: Darboux transformation and soliton solutions [J].
Geng, Xianguo ;
Shen, Jing ;
Xue, Bo .
WAVE MOTION, 2018, 79 :44-56
[7]  
Hirota R., 2004, The Direct Method in Soliton Theory
[8]   Isolated periodic wave trains and local critical wave lengths for a nonlinear reaction-diffusion equation [J].
Huang, Wentao ;
Chen, Ting ;
Li, Jibin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 74 :84-96
[9]  
Lam L., 1999, INTRO NONLINEAR PHYS
[10]   Rogue wave solutions for a higher-order nonlinear Schrodinger equation in an optical fiber [J].
Lan, Zhong-Zhou .
APPLIED MATHEMATICS LETTERS, 2020, 107