A stochastic maximum principle for processes driven by fractional Brownian motion

被引:45
作者
Biagini, F
Hu, YZ
Oksendal, B
Sulem, A
机构
[1] Univ Oslo, Dept Math, N-0316 Oslo, Norway
[2] Univ Bologna, Dept Math, I-40127 Bologna, Italy
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[4] Norwegian Sch Econ & Business Adm, N-5045 Bergen, Norway
[5] INRIA, F-78153 Le Chesnay, France
基金
美国国家科学基金会;
关键词
stochastic maximum principle; stochastic control; fractional Brownian motion;
D O I
10.1016/S0304-4149(02)00105-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a stochastic maximum principle for controlled processes X(t) = X-(u)(t) of the form dX(t) = b(t,X(t), u(t))dt + sigma(t,X(t),u(t))dB((II))(t), where B-(II)(t) is m-dimensional fractional Brownian motion with Hurst parameter H = (H-1,..., H-m) epsilon (1/2, 1)(m). As an application we solve a problem about minimal variance hedging in an incomplete market driven by fractional Brownian motion. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:233 / 253
页数:21
相关论文
共 20 条
[1]  
BIAGINI F, 2001, UNPUB MINIMAL VARIAN
[2]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612
[3]  
ELLIOTT RJ, 2000, GEN FRACTIONAL WHITE
[4]  
HAUSSMAN U, 1986, STOCHASTIC MAXIMUM P
[5]  
Holden H., 1996, Stochastic Partial Differential Equations
[6]   Heat equations with fractional white noise potentials [J].
Hu, Y .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (03) :221-243
[7]  
HU Y, 1999, FRACTIONAL WHITE NOI, V10
[8]  
HU Y, 2000, CMS C P, V29, P317
[9]  
HU Y, 1999, CMS C P, V29, P327
[10]  
HU Y, 2000, MATH PHYS STOCHASTIC, P267