On the dynamics of Comet 1P/Halley: Lyapunov and power spectra

被引:2
作者
Perez-Hernandez, Jorge A. [1 ]
Benet, Luis [1 ]
机构
[1] UNAM, Inst Ciencias Fis, Apdo Postal 48-3, Cuernavaca 62251, Morelos, Mexico
关键词
Chaos; methods: numerical; comets: general; comets: individual: 1P/Halley; CHAOTIC SCATTERING; MOTION;
D O I
10.1093/mnras/stz1139
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using a purely Newtonian model for the Solar system, we investigate the dynamics of comet 1P/Halley considering in particular the Lyapunov and power spectra of its orbit, using the nominal initial conditions of JPL's Horizons system. We carry out precise numerical integrations of the (N + 1)-restricted problem and the first variational equations, considering a time span of 2 x 10(5) yr. The power spectra are dominated by a broad-band component, with peaks located at the current planetary frequencies, including contributions from Jupiter, Venus, the Earth and Saturn, as well as the 1 : 6 resonance among Halley and Jupiter and higher harmonics. From the average value of the maximum Lyapunov exponent we estimate the Lyapunov time of the comet's nominal orbit, obtaining tau(L) similar or equal to 562 yr; the remaining independent Lyapunov exponents (not related by time-reversal symmetry) tend asymptotically to zero as t(-1/2). Yet, our results do not display convergence of the maximum Lyapunov exponent. We argue that the lack of convergence of the maximum Lyapunov exponent is a signature of transient chaos which will lead to an eventual ejection of the comet from the Solar system.
引用
收藏
页码:296 / 303
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 2016, LYAPUNOV EXPONENTS T, DOI [DOI 10.1017/CBO9781139343473, 10.1017/CBO9781139343473]
[2]   Symmetry breaking: A heuristic approach to chaotic scattering in many dimensions [J].
Benet, L ;
Broch, J ;
Merlo, O ;
Seligman, TH .
PHYSICAL REVIEW E, 2005, 71 (03)
[3]   Chaotic scattering in the restricted three-body problem II. Small mass parameters [J].
Benet, L ;
Seligman, TH ;
Trautmann, D .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 71 (03) :167-189
[4]  
Benettin G., 1980, Meccanica, V15, P9, DOI DOI 10.1007/BF02128236
[5]  
Benettin Giancarlo, 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[6]   The origin of chaos in the orbit of comet 1P/Halley [J].
Boekholt, T. C. N. ;
Pelupessy, F. I. ;
Heggie, D. C. ;
Zwart, S. F. Portegies .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) :3576-3584
[7]  
CHIRIKOV BV, 1989, ASTRON ASTROPHYS, V221, P146
[8]  
CONTOPOULOS G, 1989, ASTRON ASTROPHYS, V222, P329
[9]  
Giorgini J.D., 1996, BAAS, V28, P1158
[10]   A software package for the numerical integration of ODEs by means of high-order Taylor methods [J].
Jorba, A ;
Zou, MR .
EXPERIMENTAL MATHEMATICS, 2005, 14 (01) :99-117