Plasma-processed homogeneous magnesium hydride/carbon nanocomposites for highly stable lithium storage

被引:9
作者
Chang, Xinghua [1 ,2 ]
Zheng, Xinyao [1 ]
Guo, Yanru [1 ]
Chen, Jun [1 ]
Zheng, Jie [1 ]
Li, Xingguo [1 ]
机构
[1] Peking Univ, BNLMS, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv & Interdisciplinary Studies, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
magnesium hydride; anode; lithium-ion batteries; thermal plasma; nanocomposite; LI-ION BATTERIES; HIGH-PERFORMANCE ANODE; HYDROGEN-STORAGE; NEGATIVE ELECTRODE; HIGH-CAPACITY; CONVERSION REACTIONS; GRAPHENE; CARBON; NANOPARTICLES; MG;
D O I
10.1007/s12274-017-1902-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnesium hydride (MgH2) is a high-capacity anode material for lithium ion batteries, which suffers from poor cycling stability. In this study, we describe a thermal plasma-based approach to prepare homogeneous MgH2/C nanocomposites with very high cycling stability. In this process, magnesium evaporation is coupled with carbon generation from the plasma decomposition of acetylene, leading to a homogeneous Mg/C nanocomposite, which can be easily converted to MgH2/C by hydrogenation. The MgH2/C nanocomposite achieves a high reversible capacity of up to 620 mAh.g(-1) after 1,000 cycles with an ultralow decay rate of only 0.0036% per cycle, which represents a significantly improved performance compared to previous results.
引用
收藏
页码:2724 / 2732
页数:9
相关论文
共 42 条
[1]   CATALYTIC SYNTHESIS OF MAGNESIUM HYDRIDE UNDER MILD CONDITIONS [J].
BOGDANOVIC, B ;
LIAO, S ;
SCHWICKARDI, M ;
SIKORSKY, P ;
SPLIETHOFF, B .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1980, 19 (10) :818-819
[2]   Lithium storage in amorphous TiNi hydride: Electrode for rechargeable lithium-ion batteries [J].
Bououdina, M. ;
Oumellal, Y. ;
Dupont, L. ;
Aymard, L. ;
Al-Gharni, H. ;
Al-Hajry, A. ;
Maark, T. A. ;
De Sarkar, A. ;
Ahuja, R. ;
Deshpande, M. D. ;
Qian, Z. ;
Rahane, A. B. .
MATERIALS CHEMISTRY AND PHYSICS, 2013, 141 (01) :348-354
[3]   Magnesium hydride as a high capacity negative electrode for lithium ion batteries [J].
Brutti, S. ;
Mulas, G. ;
Piciollo, E. ;
Panero, S. ;
Reale, P. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (29) :14531-14537
[4]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[5]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764
[6]   Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries [J].
Fan, Ling ;
Lu, Bingan .
SMALL, 2016, 12 (20) :2783-2791
[7]   Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance [J].
Fang, Baizeng ;
Kim, Min-Sik ;
Kim, Jung Ho ;
Lim, Sinmuk ;
Yu, Jong-Sung .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10253-10259
[8]   Carbon materials for lithium-ion rechargeable batteries [J].
Flandrois, S ;
Simon, B .
CARBON, 1999, 37 (02) :165-180
[9]  
Ikeda S, 2013, CHEM COMMUN, V49, P7174, DOI 10.1039/c3cc43987a
[10]  
Jeon KJ, 2011, NAT MATER, V10, P286, DOI [10.1038/NMAT2978, 10.1038/nmat2978]