Quasiconvexity and partial regularity via nonlinear potentials

被引:29
作者
De Filippis, Cristiana [1 ]
机构
[1] Univ Parma, Dipartimento SMFI, Parco Area Sci 53-A, I-43124 Parma, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 163卷
关键词
Quasiconvexity; Nonlinear potential theory; Degenerate variational integrals; (p; q)-Growth; LOWER SEMICONTINUITY; MULTIPLE INTEGRALS; SINGULAR SET; MINIMIZERS; FUNCTIONALS; CALCULUS; APPROXIMATION; EQUATIONS; MINIMA; (P;
D O I
10.1016/j.matpur.2022.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how to infer sharp partial regularity results for relaxed minimizers of degenerate, nonuniformly elliptic quasiconvex functionals, using tools from Nonlinear Potential Theory. In particular, in the setting of functionals with (p, q)growth - according to the terminology of Marcellini [52] - we derive optimal local regularity criteria under minimal assumptions on the data. (c) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:11 / 82
页数:72
相关论文
共 69 条
[1]  
ACERBI E, 1987, ARCH RATION MECH AN, V99, P261
[2]  
[Anonymous], 1968, Translations of Mathematical Monographs
[3]  
[Anonymous], 1952, Pac. J. Math, DOI [DOI 10.2140/PJM.1952.2.25), DOI 10.2140/PJM.1952.2.25]
[4]  
[Anonymous], 1996, Ann. Sc. Norm. Super. Pisa Cl. Sci.
[5]  
[Anonymous], 1984, P STEKLOV I MATH+
[6]   DISCONTINUOUS EQUILIBRIUM SOLUTIONS AND CAVITATION IN NON-LINEAR ELASTICITY [J].
BALL, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 306 (1496) :557-611
[7]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[8]   Riesz potential estimates for a general class of quasilinear equations [J].
Baroni, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :803-846
[9]   Lipschitz Bounds and Nonuniform Ellipticity [J].
Beck, Lisa ;
Mingione, Giuseppe .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (05) :944-1034
[10]   ON THE REGULARITY OF MINIMIZERS FOR SCALAR INTEGRAL FUNCTIONALS WITH (p, q)-GROWTH [J].
Bella, Peter ;
Schaeffner, Mathias .
ANALYSIS & PDE, 2020, 13 (07) :2241-2257