Sign-changing bubble for Neumann problem with critical nonlinearity on the boundary

被引:0
作者
Ammar, Siwar [1 ]
Hammami, Mokhless [2 ]
Ismail, Houria [2 ]
机构
[1] Univ Monastir, Rue Salem Bchir NB 56, Monastir 5000, Tunisia
[2] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, Tunisia
关键词
blow-up solution; critical Sobolev exponent; sign-changing solutions; MEAN-CURVATURE PROBLEM; SCALAR CURVATURE; R-N; CONFORMAL METRICS; EQUATION; BALL; B-4;
D O I
10.1002/mma.4018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to construct sign-changing solution for the following Neumann problem: (P) : Delta u = 0, in R-+(n) , and - partial derivative u/partial derivative x(n) = K(x)vertical bar u vertical bar(2/n-2) u on partial derivative R-+(n) , where n >= 3 and K is a bounded and continuous function on Rn-1, which concentrate around two critical points satisfying some conditions. Copyright (C) 2016 JohnWiley & Sons, Ltd.
引用
收藏
页码:896 / 914
页数:19
相关论文
共 16 条
[1]   A Morse theoretical approach for the boundary mean curvature problem on B4 [J].
Abdelhedi, Wael ;
Chtioui, Hichem ;
Ahmedou, Mohameden Ould .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1307-1341
[2]   The prescribed boundary mean curvature problem on the standard n-dimensional ball [J].
Abdelhedi, Wael ;
Chtioui, Hichem .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) :668-686
[3]   CONCENTRATION OF SOLUTIONS FOR THE MEAN CURVATURE PROBLEM [J].
Abdelhedi, Wael .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) :631-642
[4]   PRESCRIBING MEAN CURVATURE ON Bn [J].
Abdelhedi, Wael ;
Chtioui, Hichem .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (09) :1157-1187
[5]  
BAHRI A, 1995, CALC VAR PARTIAL DIF, V3, P67, DOI 10.1007/s005260050007
[6]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[7]  
Bahri A., 1989, Pitman Res. Notes Math. Ser., V182
[8]   CONCENTRATION PHENOMENA FOR A FOURTH-ORDER EQUATION ON Rn [J].
Ben Ayed, Mohamed ;
Selmi, Abdelbaki .
PACIFIC JOURNAL OF MATHEMATICS, 2009, 242 (01) :1-32
[9]   On the scalar curvature equation -: Δu = (1+εΚ) u(N+2)/(N-2) in RN [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (03) :403-419
[10]  
Chang SYA, 1998, MATH ANN, V310, P473