A TRAFFIC FLOW MODEL WITH NON-SMOOTH METRIC INTERACTION: WELL-POSEDNESS AND MICRO-MACRO LIMIT

被引:31
作者
Goatin, Paola [1 ]
Rossi, Francesco [2 ]
机构
[1] Inria Sophia Antipolis Mediterranee, Valbonne, France
[2] Aix Marseille Univ, CNRS, ENSAM, Univ Toulon,LSIS UMR 7296, F-13397 Marseille, France
基金
欧洲研究理事会;
关键词
Transport equations; non-local velocity; Wasserstein distance; macroscopic traffic flow models; micro-macro limits; WASSERSTEIN DISTANCE; SIMULATION; WAVES;
D O I
10.4310/CMS.2017.v15.n1.a12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of solutions to a transport equation modelling vehicular traffic in which the velocity field depends non-locally on the downstream traffic density via a discontinuous anisotropic kernel. The result is obtained recasting the problem in the space of probability measures equipped with the oo-Wasserstein distance. We also show convergence of solutions of a finite dimensional system, which provide a particle method to approximate the solutions to the original problem.
引用
收藏
页码:261 / 287
页数:27
相关论文
共 37 条
[1]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[2]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[3]   Hamiltonian ODEs in the wasserstein space of probability measures [J].
Ambrosio, Luigi ;
Gangbo, Wilfred .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (01) :18-53
[4]  
[Anonymous], 2008, Metric Spaces and in the Space of Probability Measures
[5]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[6]   Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety [J].
Biswas, S ;
Tatchikou, R ;
Dion, F .
IEEE COMMUNICATIONS MAGAZINE, 2006, 44 (01) :74-82
[7]  
Blandin S., 2015, NUMER MATH, P1
[8]   A general phase transition model for traffic flow on networks [J].
Blandin, Sebastien ;
Goatin, Paola ;
Piccoli, Benedetto ;
Bayen, Alexandre ;
Work, Daniel .
PROCEEDINGS OF EWGT 2012 - 15TH MEETING OF THE EURO WORKING GROUP ON TRANSPORTATION, 2012, 54 :302-311
[9]  
Bouchut F., 2000, SERIES APPL MATH
[10]  
Bressan A., 2000, Hyperbolic systems of conservation laws: the onedimensional Cauchy problem, V20