A TRAFFIC FLOW MODEL WITH NON-SMOOTH METRIC INTERACTION: WELL-POSEDNESS AND MICRO-MACRO LIMIT

被引:30
作者
Goatin, Paola [1 ]
Rossi, Francesco [2 ]
机构
[1] Inria Sophia Antipolis Mediterranee, Valbonne, France
[2] Aix Marseille Univ, CNRS, ENSAM, Univ Toulon,LSIS UMR 7296, F-13397 Marseille, France
基金
欧洲研究理事会;
关键词
Transport equations; non-local velocity; Wasserstein distance; macroscopic traffic flow models; micro-macro limits; WASSERSTEIN DISTANCE; SIMULATION; WAVES;
D O I
10.4310/CMS.2017.v15.n1.a12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of solutions to a transport equation modelling vehicular traffic in which the velocity field depends non-locally on the downstream traffic density via a discontinuous anisotropic kernel. The result is obtained recasting the problem in the space of probability measures equipped with the oo-Wasserstein distance. We also show convergence of solutions of a finite dimensional system, which provide a particle method to approximate the solutions to the original problem.
引用
收藏
页码:261 / 287
页数:27
相关论文
共 37 条
  • [1] AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW
    Amadori, Debora
    Shen, Wen
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) : 105 - 131
  • [2] Ambrosio L., 2000, Oxford Mathematical Monographs
  • [3] Hamiltonian ODEs in the wasserstein space of probability measures
    Ambrosio, Luigi
    Gangbo, Wilfred
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (01) : 18 - 53
  • [4] [Anonymous], 2008, Metric Spaces and in the Space of Probability Measures
  • [5] On nonlocal conservation laws modelling sedimentation
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    Tory, E. M.
    [J]. NONLINEARITY, 2011, 24 (03) : 855 - 885
  • [6] Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety
    Biswas, S
    Tatchikou, R
    Dion, F
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2006, 44 (01) : 74 - 82
  • [7] Blandin S., 2015, NUMER MATH, P1
  • [8] A general phase transition model for traffic flow on networks
    Blandin, Sebastien
    Goatin, Paola
    Piccoli, Benedetto
    Bayen, Alexandre
    Work, Daniel
    [J]. PROCEEDINGS OF EWGT 2012 - 15TH MEETING OF THE EURO WORKING GROUP ON TRANSPORTATION, 2012, 54 : 302 - 311
  • [9] Bouchut F., 2000, SERIES APPL MATH
  • [10] Bressan A., 2000, Hyperbolic systems of conservation laws: the onedimensional Cauchy problem, V20