This paper reports on the RF design of fully reconfigurable quasi-elliptic-type single- and multi-hand microwave bandpass filters (BPFs) and duplexers. They are based on series-cascaded resonators and multi-resonant/multi-band cells that produce frequency-reconfigurable poles and transmission zeros (TZs). By appropriately tuning the resonant frequencies of their constituent resonators, multiple levels of transfer function adaptivity can be obtained. These capabilities include center-frequency and bandwidth tuning, as well as intrinsic RF switching-off (i.e., without the use of RF switches). As opposed to conventional BPI; tuning mechanisms, the aforementioned reconfiguration characteristics avoid the use of tunable couplings. The basic operating principles of the engineered resonator-cascade BPF concept are presented through a three-pole/two-TZ example. Afterward, methods for expanding the proposed filter design approach to higher order, multi-band, and multi-port (e.g., duplexers) realizations are explained through coupling-matrix-based analysis. For practical-demonstration purposes, tour L-band tunable microstrip prototypes were developed and measured. They include: 1) a five-pole/four-TZ BPF; 2) a five-pole/two-TZ BPF; 3) a dual-band BPF with two three-pole/two-TZ passbands; and 4) an RF duplexer.