共 55 条
Design of a Multi-Dopamine-Modified Polymer Ligand Optimally Suited for Interfacing Magnetic Nanoparticles with Biological Systems
被引:65
作者:
Wang, Wentao
[1
]
Ji, Xin
[1
]
Na, Hyon Bin
[1
]
Safi, Malak
[1
]
Smith, Alexandra
[2
,3
]
Palui, Goutam
[1
]
Perez, J. Manuel
[2
,3
]
Mattoussi, Hedi
[1
]
机构:
[1] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA
[2] Univ Cent Florida, Nanosci Technol Ctr, Orlando, FL 32826 USA
[3] Univ Cent Florida, Dept Chem, Orlando, FL 32826 USA
来源:
基金:
美国国家科学基金会;
关键词:
IRON-OXIDE NANOPARTICLES;
HYDROPHOBIC NANOCRYSTALS;
FE3O4;
NANOPARTICLES;
AMPHIPHILIC POLYMER;
CHEMICAL DESIGN;
CANCER;
MRI;
DELIVERY;
SIZE;
PEGYLATION;
D O I:
10.1021/la500974r
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r(2) relaxivity values.
引用
收藏
页码:6197 / 6208
页数:12
相关论文