Characterisation of a microwave induced plasma torch for glass surface modification

被引:15
作者
Bennett, Adam [1 ]
Yu, Nan [2 ]
Castelli, Marco [3 ]
Chen, Guoda [4 ]
Balleri, Alessio [5 ]
Urayama, Takuya [6 ]
Fang, Fengzhou [2 ]
机构
[1] Cranfield Univ, Surface Engn & Precis Inst, Cranfield MK43 0AL, Beds, England
[2] Univ Coll Dublin, Ctr Micro Nano Mfg Technol MNMT Dublin, Dublin D04 V1W8, Ireland
[3] Mfg Technol Ctr MTC, Coventry CV7 9JU, W Midlands, England
[4] Zhejiang Univ Technol, Minist Educ & Zhejiang Prov, Key Lab E&M, Hangzhou 310014, Peoples R China
[5] Cranfield Univ, Ctr Elect Warfare Informat & Cyber, Shrivenham SN6 8LA, England
[6] Adtec Plasma Technol Co Ltd, Fukuyama, Hiroshima 7120942, Japan
基金
英国工程与自然科学研究理事会; 爱尔兰科学基金会; 中国国家自然科学基金;
关键词
microwave induced plasma; spectrum analysis; surface modification;
D O I
10.1007/s11465-020-0603-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Microwave induced plasma torches find wide applications in material and chemical analysis. Investigation of a coaxial electrode microwave induced plasma (CE-MIP) torch is conducted in this study, making it available for glass surface modification and polishing. A dedicated nozzle is designed to inject secondary gases into the main plasma jet. This study details the adaptation of a characterisation process for CE-MIP technology. Microwave spectrum analysis is used to create a polar plot of the microwave energy being emitted from the coaxial electrode, where the microwave energy couples with the gas to generate the plasma jet. Optical emission spectroscopy analysis is also employed to create spatial maps of the photonic intensity distribution within the plasma jet when different additional gases are injected into it. The CE-MIP torch is experimentally tested for surface energy modification on glass where it creates a super-hydrophilic surface.
引用
收藏
页码:122 / 132
页数:11
相关论文
共 33 条
[1]  
[Anonymous], 1982, Antenna Theory: Analysis and Design
[2]   Non-conventional ultra-precision manufacturing of ULE® mirror surfaces using atmospheric reactive plasma jets [J].
Arnold, Thomas ;
Boehm, Georg ;
Paetzelt, Hendrik .
ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION II, 2016, 9912
[3]   Investigation of the antimicrobial activity at safe levels for eukaryotic cells of a low power atmospheric pressure inductively coupled plasma source [J].
Barbieri, Daniela ;
Boselli, Marco ;
Cavrini, Francesca ;
Colombo, Vittorio ;
Gherardi, Matteo ;
Landini, Maria Paola ;
Laurita, Romolo ;
Liguori, Anna ;
Stancampiano, Augusto .
BIOINTERPHASES, 2015, 10 (02)
[4]  
Bennett A, 2020, P AIP C
[5]   Rapid optical surface figuring using reactive atom plasma [J].
Castelli, M. ;
Jourdain, R. ;
Morantz, P. ;
Shore, P. .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2012, 36 (03) :467-476
[6]   Rapid Material Characterization of Deep-Alloyed Steels by Shock Wave-Based Indentation Technique and Deep Rolling [J].
Czotscher T. ;
Wielki N. ;
Vetter K. ;
Vollertsen F. ;
Meyer D. .
Nanomanufacturing and Metrology, 2019, 2 (1) :56-64
[7]  
Gustrau F., 2012, RF and Microwave Engineering: Fundamentals of Wireless Communications
[8]  
Hammerstad E., 1975, MICROSTRIP HDB
[9]  
Harvey A. F., 1955, Proc. IEE B Radio Electron. Eng., V102, P493
[10]   Optimization and analysis of shape of coaxial electrode for microwave plasma in water [J].
Hattori, Yoshiaki ;
Mukasa, Shinobu ;
Nomura, Shinfuku ;
Toyota, Hiromichi .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (06)