Finite-time synchronization of drive-response systems via periodically intermittent adaptive control

被引:74
作者
Mei, Jun [1 ,2 ]
Jiang, Minghui [1 ]
Wang, Xiaohong [3 ]
Han, Jiali [1 ]
Wang, Shuangtao [1 ]
机构
[1] China Three Gorges Univ, Coll Sci, Yichang 443002, Hubei, Peoples R China
[2] Univ Pretoria, Dept Elect Elect & Comp Engn, Ctr New Energy Syst, ZA-0002 Pretoria, South Africa
[3] Henan Univ Sci & Technol, Coll Informat Engn, Luoyang 471023, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2014年 / 351卷 / 05期
基金
中国国家自然科学基金;
关键词
COMPLEX DYNAMICAL NETWORK; IMPULSIVE SYNCHRONIZATION; CHAOTIC SYSTEMS; STABILIZATION; CONSENSUS; IDENTIFICATION;
D O I
10.1016/j.jfranklin.2014.01.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the finite-time synchronization between two complex dynamical networks via the periodically intermittent adaptive control and the periodically intermittent feedback control is studied. The finite-time synchronization criteria are derived based on finite-time stability theory, the differential inequality and the analysis technique. Since the traditional synchronization criteria for some models are improved in the convergence time by using the novel periodically intermittent adaptive control and periodically intermittent feedback control, the results of this paper are important. Numerical examples are finally presented to illustrate the effectiveness and correctness of the theoretical results. (C) 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2691 / 2710
页数:20
相关论文
共 48 条
[1]   Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique [J].
Aghababa, Mohammad Pourmahmood ;
Khanmohammadi, Sohrab ;
Alizadeh, Ghassem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) :3080-3091
[2]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[3]   Robust impulsive synchronization of complex delayed dynamical networks [J].
Cai, Shuiming ;
Zhou, Jin ;
Xiang, Lan ;
Liu, Zengrong .
PHYSICS LETTERS A, 2008, 372 (30) :4990-4995
[4]   Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control [J].
Cai, Shuiming ;
Hao, Junjun ;
Liu, Zengrong .
CHAOS, 2011, 21 (02)
[5]   Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control [J].
Cai, Shuiming ;
Hao, Junjun ;
He, Qinbin ;
Liu, Zengrong .
PHYSICS LETTERS A, 2011, 375 (19) :1965-1971
[6]   Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes [J].
Cai, Shuiming ;
He, Qinbin ;
Hao, Junjun ;
Liu, Zengrong .
PHYSICS LETTERS A, 2010, 374 (25) :2539-2550
[7]   Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit [J].
Cai, Shuiming ;
Liu, Zengrong ;
Xu, Fengdan ;
Shen, Jianwei .
PHYSICS LETTERS A, 2009, 373 (42) :3846-3854
[8]   Pinning control of complex networks via edge snapping [J].
DeLellis, P. ;
di Bernardo, M. ;
Porfiri, M. .
CHAOS, 2011, 21 (03)
[9]  
DeLellis P., 2012, IEEE T CIRCUITS-I, V57, P2153
[10]   On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks [J].
DeLellis, Pietro ;
di Bernardo, Mario ;
Russo, Giovanni .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (03) :576-583