MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin

被引:253
作者
Yun, Jina [1 ,2 ]
Puri, Rajat [3 ]
Yang, Huan [1 ]
Lizzio, Michael A. [1 ]
Wu, Chunlai [4 ]
Sheng, Zu-Hang [3 ]
Guo, Ming [1 ,2 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
[3] NINDS, Synapt Funct Sect, NIH, Bethesda, MD 20892 USA
[4] Louisiana State Univ, Hlth Sci Ctr, Neurosci Ctr Excellence, New Orleans, LA USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Brain Res Inst, Los Angeles, CA 90095 USA
来源
ELIFE | 2014年 / 3卷
关键词
PARKIN-DEFICIENT MICE; E3 UBIQUITIN LIGASE; MITOCHONDRIAL FUSION; DAMAGED MITOCHONDRIA; PINK1-DEFICIENT MICE; NIGRAL DEGENERATION; VPS35; MUTATIONS; IN-VIVO; MITOPHAGY; PINK1;
D O I
10.7554/eLife.01958
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parkinson's disease (PD) genes PINK1 and parkin act in a common pathway that regulates mitochondrial integrity and quality. Identifying new suppressors of the pathway is important for finding new therapeutic strategies. In this study, we show that MUL1 suppresses PINK1 or parkin mutant phenotypes in Drosophila. The suppression is achieved through the ubiquitin-dependent degradation of Mitofusin, which itself causes PINK1/parkin mutant-like toxicity when overexpressed. We further show that removing MUL1 in PINK1 or parkin loss-of-function mutant aggravates phenotypes caused by loss of either gene alone, leading to lethality in flies and degeneration in mouse cortical neurons. Together, these observations show that MUL1 acts in parallel to the PINK1/parkin pathway on a shared target mitofusin to maintain mitochondrial integrity. The MUL1 pathway compensates for loss of PINK1/parkin in both Drosophila and mammals and is a promising therapeutic target for PD.
引用
收藏
页数:26
相关论文
共 69 条
[1]   Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice [J].
Akundi, Ravi S. ;
Huang, Zhenyu ;
Eason, Joshua ;
Pandya, Jignesh D. ;
Zhi, Lianteng ;
Cass, Wayne A. ;
Sullivan, Patrick G. ;
Bueeler, Hansruedi .
PLOS ONE, 2011, 6 (01)
[2]   Two Deubiquitylases Act on Mitofusin and Regulate Mitochondrial Fusion along Independent Pathways [J].
Anton, Fabian ;
Dittmar, Gunnar ;
Langer, Thomas ;
Escobar-Henriques, Mafalda .
MOLECULAR CELL, 2013, 49 (03) :487-498
[3]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[4]   Vps35 Mediates Vesicle Transport between the Mitochondria and Peroxisomes [J].
Braschi, Emelie ;
Goyon, Vanessa ;
Zunino, Rodolfo ;
Mohanty, Abhishek ;
Xu, Liqun ;
McBride, Heidi M. .
CURRENT BIOLOGY, 2010, 20 (14) :1310-1315
[5]   MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission [J].
Braschi, Emelie ;
Zunino, Rodolfo ;
McBride, Heidi M. .
EMBO REPORTS, 2009, 10 (07) :748-754
[6]   Spatial Parkin Translocation and Degradation of Damaged Mitochondria via Mitophagy in Live Cortical Neurons [J].
Cai, Qian ;
Zakaria, Hesham Mostafa ;
Simone, Anthony ;
Sheng, Zu-Hang .
CURRENT BIOLOGY, 2012, 22 (06) :545-552
[7]   Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health [J].
Chan, David C. .
ANNUAL REVIEW OF GENETICS, VOL 46, 2012, 46 :265-287
[8]   Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy [J].
Chan, Nickie C. ;
Salazar, Anna M. ;
Pham, Anh H. ;
Sweredoski, Michael J. ;
Kolawa, Natalie J. ;
Graham, Robert L. J. ;
Hess, Sonja ;
Chan, David C. .
HUMAN MOLECULAR GENETICS, 2011, 20 (09) :1726-1737
[9]  
Chen Chun-Hong, 2006, V342, P229, DOI 10.1385/1-59745-123-1:229
[10]   Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J].
Chen, HC ;
Detmer, SA ;
Ewald, AJ ;
Griffin, EE ;
Fraser, SE ;
Chan, DC .
JOURNAL OF CELL BIOLOGY, 2003, 160 (02) :189-200