Crystallization kinetics and enhanced Bi NIR luminescence of transparent silicate glass-ceramics containing Sr2YbF7 nanocrystals

被引:14
作者
Li, Xiaoman [1 ,2 ]
Hu, Fangfang [3 ]
Peng, Mingying [1 ,2 ]
Zhang, Qinyuan [1 ,2 ]
Yin, Min [3 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, State Key Lab Luminescent Mat & Devices, Guangzhou, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Mat Sci & Engn, Inst Opt Commun Mat, Guangzhou, Guangdong, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
bismuth; crystallization kinetics; fluoride nanocrystals; NIR luminescence; silicate glass-ceramics; UP-CONVERSION LUMINESCENCE; BAND INFRARED LUMINESCENCE; GERMANATE LASER GLASSES; BISMUTH; BEHAVIOR; AMPLIFIERS; REGION; ER3+;
D O I
10.1111/jace.14607
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bismuth-doped glasses and crystals have been widely investigated due to their intriguing potential applications in superbroadband fiber amplifier and lasers in new NIR spectral range. However, few reports have been devoted so far to bismuth-doped transparent glass-ceramics. Here, this work reports on bismuth-doped silicate glasses and glass-ceramics, which were prepared by melt-quenching and consequent annealing processes, respectively. On the basis of the analyses on crystallization kinetics, nucleation and growth rate of crystalline phase can be modulated and Sr2YbF7 nanophase can, therefore, be precipitated uniformly inside the glass matrix in a controlled way to maintain proper transparence especially in optical telecommunication windows. Once the nanophase comes into being, enhanced bismuth NIR luminescence can be observed by more than 40 times upon excitation of 470nm. Similar enhancement can appear upon different excitation schemes and the mechanism is discussed accordingly. Such Bi doped transparent glass-ceramics with improved luminescence efficiency might find application in fiber lasers for future optical fiber communication.
引用
收藏
页码:574 / 582
页数:9
相关论文
共 37 条
[1]   DETERMINATION OF REACTION KINETIC-PARAMETERS FROM VARIABLE TEMPERATURE DSC OR DTA [J].
BANSAL, NP ;
DOREMUS, RH .
JOURNAL OF THERMAL ANALYSIS, 1984, 29 (01) :115-119
[2]   CRYSTALLIZATION KINETICS OF BAO-AL2O3-SIO2 GLASSES [J].
BANSAL, NP ;
HYATT, MJ .
JOURNAL OF MATERIALS RESEARCH, 1989, 4 (05) :1257-1265
[3]   Bi-doped fiber lasers [J].
Bufetov, I. A. ;
Dianov, E. M. .
LASER PHYSICS LETTERS, 2009, 6 (07) :487-504
[4]   Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior [J].
Chen, Daqin ;
Wan, Zhongyi ;
Zhou, Yan ;
Huang, Ping ;
Zhong, Jiasong ;
Ding, Mingye ;
Xiang, Weidong ;
Liang, Xiaojuan ;
Ji, Zhenguo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 638 :21-28
[5]   Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals [J].
Chen, DQ ;
Wang, YS ;
Yu, YL ;
Ma, E ;
Bao, F ;
Hu, ZJ ;
Cheng, Y .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 95 (2-3) :264-269
[6]   Broadband NIR luminescence of Bi-doped Li2O-Al2O3-SiO2 glass-ceramics [J].
Dai, Nengli ;
Luan, Huaixun ;
Liu, Zijun ;
Sheng, Yubang ;
Peng, Jinggang ;
Jiang, Zuowen ;
Li, Haiqing ;
Yang, Luyun ;
Li, Jinyan .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (22) :2970-2973
[7]  
de Pablos Martin A, 2011, J AM CHEM SOC, V94, P2420
[8]   Bismuth-doped fibre amplifier for the range 1300-1340 nm [J].
Dianov, E. M. ;
Melkumov, M. A. ;
Shubin, A. V. ;
Firstov, S. V. ;
Khopin, V. F. ;
Guryanov, A. N. ;
Bufetov, I. A. .
QUANTUM ELECTRONICS, 2009, 39 (12) :1099-1101
[9]   Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region [J].
Dvoirin, V. V. ;
Mashinsky, V. M. ;
Medvedkov, O. I. ;
Umnikov, A. A. ;
Gur'yanov, A. N. ;
Dianov, E. M. .
QUANTUM ELECTRONICS, 2009, 39 (06) :583-584
[10]   Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region [J].
Firstova, E. G. ;
Bufetov, I. A. ;
Khopin, V. F. ;
Vel'miskin, V. V. ;
Firstov, S. V. ;
Bufetova, G. A. ;
Nishchev, K. N. ;
Gur'yanov, A. N. ;
Dianov, E. M. .
QUANTUM ELECTRONICS, 2015, 45 (01) :59-65