Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements

被引:52
作者
Matsumoto, Takahiro [1 ,2 ,3 ,4 ]
Koizumi, Tomoaki [1 ]
Kawakami, Yasuyuki [1 ]
Okamoto, Koichi [5 ]
Tomita, Makoto [6 ]
机构
[1] Stanley Elect Corp, Ctr Res & Dev, Tsukuba, Ibaraki 3002635, Japan
[2] Osaka Univ, Ctr Quantum Sci & Technol Extreme Condit, Toyonaka, Osaka 5608531, Japan
[3] Shizuoka Univ, Res Inst Elect, Hamamatsu, Shizuoka 4328011, Japan
[4] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
[5] Kyushu Univ, Iinstitute Mat Chem & Engn, Fukuoka 8128502, Japan
[6] Shizuoka Univ, Dept Phys, Suruga 4228529, Japan
关键词
ALIGNED CARBON NANOTUBES; OPTICAL-PROPERTIES; GRAPHITE; NICKEL; SURFACES; ABSORBER; TUNGSTEN; METALS; ALLOYS; FILMS;
D O I
10.1364/OE.21.030964
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the successful fabrication of a novel type of blackbody material based on a graphene nanostructure. We demonstrate that the graphene nanostructure not only shows a low reflectance comparable to that of a carbon nanotube array but also shows an extremely high heat resistance at temperatures greater than 2500 K. The graphene nanostructure, which has an emissivity higher than 0.99 over a wide range of wavelengths, behaves as a standard blackbody material; therefore, the radiation spectrum and the temperature can be precisely measured in a simple manner. Here, the spectral emissivities of tungsten and tantalum are experimentally obtained using this ideal blackbody material and are compared to previously reported spectra. We clearly demonstrate the existence of a temperature-independent fixed point of emissivity at a certain wavelength. Both the spectral emissivity as a function of temperature and the cross-over point in the emissivity spectrum are well described by the complex dielectric function based on the Lorentz-Drude model with the phonon-scattering effect. (C) 2013 Optical Society of America
引用
收藏
页码:30964 / 30974
页数:11
相关论文
共 45 条
[1]  
[Anonymous], 2004, GUINNESS WORLD RECOR, P242
[2]   Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations [J].
Bao, Hua ;
Ruan, Xiulin ;
Fisher, Timothy S. .
OPTICS EXPRESS, 2010, 18 (06) :6347-6359
[3]   OPTICAL CONSTANTS OF INCANDESCENT REFRACTORY METALS [J].
BARNES, BT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1966, 56 (11) :1546-&
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces [J].
Brown, RJC ;
Brewer, PJ ;
Milton, MJT .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (09) :2749-2754
[6]   Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption [J].
Cao, AY ;
Zhang, XF ;
Xu, CL ;
Wei, BQ ;
Wu, DH .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 70 (04) :481-486
[7]   ALIGNED CARBON NANOTUBE FILMS - PRODUCTION AND OPTICAL AND ELECTRONIC-PROPERTIES [J].
DEHEER, WA ;
BACSA, WS ;
CHATELAIN, A ;
GERFIN, T ;
HUMPHREYBAKER, R ;
FORRO, L ;
UGARTE, D .
SCIENCE, 1995, 268 (5212) :845-847
[8]   A NEW DETERMINATION OF THE EMISSIVITY OF TUNGSTEN RIBBON [J].
DEVOS, JC .
PHYSICA, 1954, 20 (09) :690-&
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   The properties of tungsten and the characteristics of tungsten lamps [J].
Forsythe, WE ;
Worthing, AG .
ASTROPHYSICAL JOURNAL, 1925, 61 (03) :146-185