Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations

被引:8
作者
Stokes, Klara [1 ]
Bras-Amoros, Maria [2 ]
机构
[1] Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, Sweden
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, E-43007 Tarragona, Spain
关键词
Numerical semigroup; Combinatorial configuration; Partial linear space; Linear pattern; Prime power generator;
D O I
10.1007/s00233-013-9493-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the numerical semigroups associated to the combinatorial configurations satisfy a family of linear, non-homogeneous, symmetric patterns. We use these patterns to prove an upper bound of the conductor and we also give an upper bound of the multiplicity. Also, we compare bounds of the conductor of numerical semigroups associated to balanced configurations, and to configurations with coprime parameters. The proof of the latter involves a bound of the conductor of prime power generated numerical semigroups.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 9 条
  • [1] [Anonymous], 1990, J COMBIN INFORM SYST
  • [2] Patterns on numerical semigroups
    Bras-Amorós, M
    García-Sánchez, PA
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) : 652 - 669
  • [3] Bras-Amoros M., 2013, INT J ALGEBRA COMPUT
  • [4] The semigroup of combinatorial configurations
    Bras-Amoros, Maria
    Stokes, Klara
    [J]. SEMIGROUP FORUM, 2012, 84 (01) : 91 - 96
  • [5] Davydov A.A., 2012, ARXIV12030709V1
  • [6] Gropp H., 2001, ELECT NOTES DISCRETE, V8, P42
  • [7] GROPP H, 2007, CRC HDB COMBINATORIA
  • [8] Grunbaum B., 2009, CONFIGURATIONS POINT
  • [9] Rosales JC, 2009, DEV MATH, V20, P1, DOI 10.1007/978-1-4419-0160-6