Fitness and Novelty in Evolutionary Art

被引:11
|
作者
Vinhas, Adriano [1 ]
Assuncao, Filipe [1 ]
Correia, Joao [1 ]
Ekart, Aniko [2 ]
Machado, Penousal [1 ]
机构
[1] Univ Coimbra, Dept Informat Engn, CISUC, Coimbra, Portugal
[2] Aston Univ, Aston Lab Intelligent Collect Engn ALICE, Comp Sci, Birmingham, W Midlands, England
来源
EVOLUTIONARY AND BIOLOGICALLY INSPIRED MUSIC, SOUND, ART AND DESIGN, EVOMUSART 2016 | 2016年 / 9596卷
关键词
Novelty search; Evolutionary art; Multi-objective optimisation;
D O I
10.1007/978-3-319-31008-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.
引用
收藏
页码:225 / 240
页数:16
相关论文
共 50 条
  • [41] Critical Factors in the Performance of Novelty Search
    Kistemaker, Steijn
    Whiteson, Shimon
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 965 - 972
  • [42] Recombination and Novelty in Neuroevolution: A Visual Analysis
    Sarti S.
    Adair J.
    Ochoa G.
    SN Computer Science, 2022, 3 (3)
  • [43] Learning Behavior Characterizations for Novelty Search
    Meyerson, Elliot
    Lehman, Joel
    Miikkulainen, Risto
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 149 - 156
  • [44] Novelty-Driven Cooperative Coevolution
    Gomes, Jorge
    Mariano, Pedro
    Christensen, Anders Lyhne
    EVOLUTIONARY COMPUTATION, 2017, 25 (02) : 275 - 307
  • [45] Surprise Search: Beyond Objectives and Novelty
    Gravina, Daniele
    Liapis, Antonios
    Yannakakis, Georgios N.
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 677 - 684
  • [46] Novelty Search for the Synthesis of Current Followers
    Naredo, Enrique
    Aurelio Duarte-Villasenor, Miguel
    de Jesus Garcia-Ortega, Manuel
    Vazquez-Lopez, Carlos E.
    Trujillo, Leonardo
    Siordia, Oscar S.
    COMPUTACION Y SISTEMAS, 2016, 20 (04): : 609 - 621
  • [47] Progressive Minimal Criteria Novelty Search
    Gomes, Jorge
    Urbano, Paulo
    Christensen, Anders Lyhne
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2012, 2012, 7637 : 281 - 290
  • [48] Novelty Search in Particle Swarm Optimization
    Ulrich, Adam
    Viktorin, Adam
    Pluhacek, Michal
    Kadavy, Tomas
    Krnavek, Jan
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [49] Novelty Search makes Evolvability Inevitable
    Doncieux, Stephane
    Paolo, Giuseppe
    Laflaquiere, Alban
    Coninx, Alexandre
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 85 - 93
  • [50] Novelty Search for Automatic Bug Repair
    Villanueva, Omar M.
    Trujillo, Leonardo
    Hernandez, Daniel E.
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1021 - 1028